Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genet Med ; : 101220, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39041334

RESUMO

PURPOSE: The gold standard for identification of post-zygotic variants (PZVs) is droplet digital PCR (ddPCR) or high-depth sequencing across multiple tissues types. These approaches are yet to be systematically implemented for monogenic disorders. We developed PZV detection pipelines for correct classification of de novo variants. METHOD: Our pipelines detect PZV in parents (gonosomal mosaicism "pGoM") and children (somatic mosaicism, "M3"). We applied them to research exome sequencing (ES) data from The Australian Cerebral Palsy Biobank (ACPB, n=145 trios) and Simons Simplex Collection (SSC, n=405 families). Candidate mosaic variants were validated using deep amplicon sequencing or ddPCR. RESULTS: 69.2% (M3trio), 63.9% (M3single) and 92.7% (pGoM) of detected variants were validated, with 48.6%, 56.7% and 26.2% of variants respectively meeting strict criteria for mosaicism. In the ACPB, 16.6% of probands and 20.7% of parents had at least one true positive somatic or pGoM variant respectively. A large proportion of PZVs detected in SSC parents (79.8%) and child (94.5%) were not previously reported. We reclassified 3.7-8.0% of germline de novo variants as mosaic. CONCLUSION: Many PZVs were incorrectly classified as germline variants or missed by previous approaches. Systematic application of our pipelines could increase genetic diagnostic rate, improve estimates of recurrence risk in families, and benefit novel disease gene identification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...