Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(7): 1473-1479, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37405871

RESUMO

The emergence of multidrug-resistant pathogens poses a threat to public health and requires new antimicrobial agents. As the archetypal glycopeptide antibiotic (GPA) used against drug-resistant Gram-positive pathogens, vancomycin provides a promising starting point. Peripheral alterations to the vancomycin scaffold have enabled the development of new GPAs. However, modifying the core remains challenging due to the size and complexity of this compound family. The recent successful chemoenzymatic synthesis of vancomycin suggests that such an approach can be broadly applied. Herein, we describe the expansion of chemoenzymatic strategies to encompass type II GPAs bearing all aromatic amino acids through the production of the aglycone analogue of keratinimicin A, a GPA that is 5-fold more potent than vancomycin against Clostridioides difficile. In the course of these studies, we found that the cytochrome P450 enzyme OxyBker boasts both broad substrate tolerance and remarkable selectivity in the formation of the first aryl ether cross-link on the linear peptide precursors. The X-ray crystal structure of OxyBker, determined to 2.8 Å, points to structural features that may contribute to these properties. Our results set the stage for using OxyBker broadly as a biocatalyst toward the chemoenzymatic synthesis of diverse GPA analogues.


Assuntos
Antibacterianos , Vancomicina , Vancomicina/química , Antibacterianos/química , Glicopeptídeos/química , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeos
2.
Nature ; 607(7917): 111-118, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732736

RESUMO

Natural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open ocean remains largely uncharted owing to limitations in the analysis of genome-resolved data at the global scale. Here we investigated the diversity and novelty of biosynthetic gene clusters in the ocean by integrating around 10,000 microbial genomes from cultivated and single cells with more than 25,000 newly reconstructed draft genomes from more than 1,000 seawater samples. These efforts revealed approximately 40,000 putative mostly new biosynthetic gene clusters, several of which were found in previously unsuspected phylogenetic groups. Among these groups, we identified a lineage rich in biosynthetic gene clusters ('Candidatus Eudoremicrobiaceae') that belongs to an uncultivated bacterial phylum and includes some of the most biosynthetically diverse microorganisms in this environment. From these, we characterized the phospeptin and pythonamide pathways, revealing cases of unusual bioactive compound structure and enzymology, respectively. Together, this research demonstrates how microbiomics-driven strategies can enable the investigation of previously undescribed enzymes and natural products in underexplored microbial groups and environments.


Assuntos
Vias Biossintéticas , Microbiota , Oceanos e Mares , Bactérias/classificação , Bactérias/genética , Vias Biossintéticas/genética , Genômica , Microbiota/genética , Família Multigênica/genética , Filogenia
3.
ACS Catal ; 10(16): 9287-9298, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34422446

RESUMO

Vancomycin is one of the most important clinical antibiotics in the fight against infectious disease. Its biological activity relies on three aromatic cross-links, which create a cup-shaped topology and allow tight binding to nascent peptidoglycan chains. The cytochrome P450 enzymes OxyB, OxyA, and OxyC have been shown to introduce these synthetically challenging aromatic linkages. The ability to utilize the P450 enzymes in a chemo-enzymatic scheme to generate vancomycin derivatives is appealing but requires a thorough understanding of their reactivities and mechanisms. Herein, we systematically explore the scope of OxyB biocatalysis and report installation of diverse diaryl ether and biaryl cross-links with varying macrocycle sizes and compositions, when the enzyme is presented with modified vancomycin precursor peptides. The structures of the resulting products were determined using one-dimensional/two-dimensional nuclear magnetic resonance spectroscopy, high-resolution mass spectrometry (HR-MS), tandem HR-MS, and isotopic labeling, as well as ultraviolet-visible light absorption and fluorescence emission spectroscopies. An exploration of the biological activities of these alternative OxyB products surprisingly revealed antifungal properties. Taking advantage of the promiscuity of OxyB, we chemo-enzymatically generated a vancomycin aglycone variant containing an expanded macrocycle. Mechanistic implications for OxyB and future directions for creating vancomycin analogue libraries are discussed.

4.
Tetrahedron ; 74(26): 3231-3237, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30386000

RESUMO

The biosynthesis of glycopeptide antibiotics (GPAs) has been an active area of research for decades. Nonetheless, insights into the activity of the cytochrome P450 enzymes required for installing the aromatic crosslinks, which form their cup-shaped topologies and render GPAs bioactive, have only recently emerged. Presently, little is known about the substrate scope and promiscuity of the P450 enzymes. Herein, we report that OxyBvan, the P450 enzyme that installs the first crosslink in vancomycin biosynthesis, is capable of catalyzing the formation of its conventional C-O-D bis-aryl ether bond in non-natural substrates and, furthermore, the formation of a second, novel linkage when D-Trp is incorporated at position 6. HR-MS/MS and isotope labeling studies indicate the second crosslink is formed between rings A and B, resulting in a novel GPA-type scaffold. OxyB is also capable of installing two crosslinks in kistamicin- and complestatin-like substrate peptides. These findings highlight the utility of OxyBvan in creating crosslinked GPA derivatives and provide clues regarding the unusual biosynthesis of kistamicin.

5.
Org Lett ; 20(19): 6318-6322, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30256110

RESUMO

The first synthesis of the tetracyclic aromatic compound furo[2,3- g]thieno[2,3- e]indole ("FTI") is described. The synthetic strategy features a photochemical benzannulation based on the reaction of an α-diazo ketone and ynamide which assembles a benzothiophene equipped with substituents that enable subsequent cyclizations to generate the nitrogen and oxygen heterocyclic rings.

6.
J Org Chem ; 83(13): 7309-7317, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29806454

RESUMO

We report a general method for synthesizing diverse d-Tyr analogues, one of the constituents of the antibiotic vancomycin, using a Negishi cross-coupling protocol. Several analogues were incorporated into the vancomycin substrate-peptide and reacted with the biosynthetic enzymes OxyB and OxyA, which install the characteristic aromatic cross-links. We find that even small structural perturbations are not accepted by OxyA. The same modifications, however, enhance the catalytic capabilities of OxyB leading to the formation of a new macrocycle within the vancomycin framework.


Assuntos
Antibacterianos/biossíntese , Tirosina/metabolismo , Vancomicina/biossíntese , Antibacterianos/química , Catálise , Sistema Enzimático do Citocromo P-450/química , Especificidade por Substrato , Vancomicina/química
7.
Angew Chem Int Ed Engl ; 57(27): 8048-8052, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29697176

RESUMO

The bioactivity of vancomycin is enabled by three aromatic crosslinks, the biosynthesis of which has been an active area of investigation for two decades. Two cytochrome P450 enzymes, OxyB and OxyA, have been shown to introduce bisaryl ether linkages with the help of a so-called X-domain. The final crosslink, however, a biaryl bond thought to be installed by OxyC, has remained elusive. We report the in vitro reconstitution of the OxyC reaction and formation of the first carbon-carbon crosslink in any glycopeptide antibiotic. Using a cascade sequence, in which the peptide substrate was incubated with the Oxy enzymes in turn, we completed the chemoenzymatic synthesis of a vancomycin aglycone variant. This approach was also used to generate a new analogue carrying a thioamide linkage at residue 4, a precursor to the amidine derivative, which is effective against vancomycin-resistant pathogens. Our results set the stage for creating therapeutic vancomycin derivatives by using the native metalloenzymes.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Vancomicina/biossíntese , Biocatálise , Ciclização , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/genética , Isoquinolinas/química , Isoquinolinas/metabolismo , Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Especificidade por Substrato , Vancomicina/análogos & derivados
8.
Biochemistry ; 57(4): 461-468, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29320164

RESUMO

Streptide is a ribosomally synthesized and post-translationally modified peptide with a unique cyclization motif consisting of an intramolecular lysine-tryptophan cross-link. Three radical S-adenosylmethionine enzymes, StrB, AgaB, and SuiB from different species of Streptococcus, have been shown to install this modification onto their respective precursor peptides in a leader-dependent fashion. Herein, we conduct detailed investigations to differentiate among several plausible mechanistic proposals, specifically addressing radical versus electrophilic addition to the indole during cross-link formation, the role of substrate side chains in binding in the enzyme active site, and the identity of the catalytic base in the reaction cycle. Our results are consistent with a radical electrophilic aromatic substitution mechanism for the key carbon-carbon bond-forming step. They also elaborate on other mechanistic features that underpin this unique and synthetically challenging post-translational modification.


Assuntos
Proteínas de Bactérias/metabolismo , Lisina/metabolismo , Streptococcus agalactiae/enzimologia , Streptococcus suis/enzimologia , Triptofano/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Catálise , Domínio Catalítico , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Precursores de Proteínas/metabolismo
9.
ACS Chem Biol ; 12(9): 2248-2253, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28696669

RESUMO

Studies on the biosynthesis of glycopeptide antibiotics have provided many insights into the strategies that Nature employs to build architecturally strained molecules. A key structural feature of vancomycin, the founding member of this class, is a set of three aromatic cross-links that are introduced via yet unknown mechanisms. Previous reports have identified three cytochrome P450 enzymes involved in this process and demonstrated enzymatic activity for OxyB, which installs the first aromatic cross-link. However, the activities of the remaining two P450 enzymes have not been recapitulated. Herein, we show that OxyA generates the second bis-aryl ether bond in vancomycin and that it exhibits strict substrate specificity toward the chlorinated, OxyB-cross-linked product. No OxyA product is detected with the unchlorinated substrate. Together with previous results, these data suggest that chlorination occurs after OxyB- but before OxyA-catalyzed cross-link formation. Our results have important implications for the chemo-enzymatic synthesis of vancomycin and its analogs.


Assuntos
Actinomycetales/enzimologia , Antibacterianos/metabolismo , Vias Biossintéticas , Sistema Enzimático do Citocromo P-450/metabolismo , Vancomicina/metabolismo , Actinomycetales/química , Actinomycetales/metabolismo , Antibacterianos/química , Halogenação , Especificidade por Substrato , Vancomicina/química
10.
Medchemcomm ; 8(4): 780-788, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28626548

RESUMO

Glycopeptide antibiotics (GPAs) have served as potent clinical drugs and as an inspiration to chemists in various disciplines. Among known GPAs, complestatin, chloropeptin, and kistamicin are unique in that they contain an unusual indole-phenol crosslink. The mechanism of formation of this linkage is unknown, and to date, the biosynthetic gene cluster of only one GPA with an indole-phenol crosslink, that of complestatin, has been identified. Here, we report the genome sequence of the kistamicin producer Nonomuraea sp. ATCC 55076. We find that this strain harbours the largest actinobacterial chromosome to date, consisting of a single linear chromosome of ∼13.1 Mbp. AntiSMASH analysis shows that ∼32 biosynthetic gene clusters and ∼10% of the genome are devoted to production of secondary metabolites, which include 1,6-dihydroxyphenazine and nomuricin, a new anthraquinone-type pentacyclic compound that we report herein. The kistamicin gene cluster (kis) was identified bioinformatically. A unique feature of kis is that it contains two cytochrome P450 enzymes, which likely catalyze three crosslinking reactions. These findings set the stage for examining the biosynthesis of kistamicin and its unusual indole-phenol crosslink in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...