Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 23(6): 1010-23, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22262461

RESUMO

Mitochondrial ATPases associated with diverse cellular activities (AAA) proteases are involved in the quality control and processing of inner-membrane proteins. Here we investigate the cellular activities of YME1L, the human orthologue of the Yme1 subunit of the yeast i-AAA complex, using stable short hairpin RNA knockdown and expression experiments. Human YME1L is shown to be an integral membrane protein that exposes its carboxy-terminus to the intermembrane space and exists in several complexes of 600-1100 kDa. The stable knockdown of YME1L in human embryonic kidney 293 cells led to impaired cell proliferation and apoptotic resistance, altered cristae morphology, diminished rotenone-sensitive respiration, and increased susceptibility to mitochondrial membrane protein carbonylation. Depletion of YME1L led to excessive accumulation of nonassembled respiratory chain subunits (Ndufb6, ND1, and Cox4) in the inner membrane. This was due to a lack of YME1L proteolytic activity, since the excessive accumulation of subunits was reversed by overexpression of wild-type YME1L but not a proteolytically inactive YME1L variant. Similarly, the expression of wild-type YME1L restored the lamellar cristae morphology of YME1L-deficient mitochondria. Our results demonstrate the importance of mitochondrial inner-membrane proteostasis to both mitochondrial and cellular function and integrity and reveal a novel role for YME1L in the proteolytic regulation of respiratory chain biogenesis.


Assuntos
Proliferação de Células , Transporte de Elétrons , Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Apoptose , Complexo I de Transporte de Elétrons , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais , NADH NADPH Oxirredutases/metabolismo , Peptídeo Hidrolases/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Biochem J ; 428(3): 363-74, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20307258

RESUMO

Mammalian CcO (cytochrome c oxidase) is a hetero-oligomeric protein complex composed of 13 structural subunits encoded by both the mitochondrial and nuclear genomes. To study the role of nuclear-encoded CcO subunits in the assembly and function of the human complex, we used stable RNA interference of COX4, COX5A and COX6A1, as well as expression of epitope-tagged Cox6a, Cox7a and Cox7b, in HEK (human embryonic kidney)-293 cells. Knockdown of Cox4, Cox5a and Cox6a resulted in reduced CcO activity, diminished affinity of the residual enzyme for oxygen, decreased holoCcO and CcO dimer levels, increased accumulation of CcO subcomplexes and gave rise to an altered pattern of respiratory supercomplexes. An analysis of the patterns of CcO subcomplexes found in both knockdown and overexpressing cells identified a novel CcO assembly intermediate, identified the entry points of three late-assembled subunits and demonstrated directly the essential character as well as the interdependence of the assembly of Cox4 and Cox5a. The ectopic expression of the heart/muscle-specific isoform of the Cox6 subunit (COX6A2) resulted in restoration of both CcO holoenzyme and activity in COX6A1-knockdown cells. This was in sharp contrast with the unaltered levels of COX6A2 mRNA in these cells, suggesting the existence of a fixed expression programme. The normal amount and function of respiratory complex I in all of our CcO-deficient knockdown cell lines suggest that, unlike non-human CcO-deficient models, even relatively small amounts of CcO can maintain the normal biogenesis of this respiratory complex in cultured human cells.


Assuntos
Núcleo Celular/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Subunidades Proteicas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Subunidades Proteicas/genética , Interferência de RNA , RNA Mensageiro/metabolismo
3.
Biochim Biophys Acta ; 1782(5): 317-25, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18319067

RESUMO

The impact of point mutations in mitochondrial tRNA genes on the amount and stability of respiratory chain complexes and ATP synthase (OXPHOS) has been broadly characterized in cultured skin fibroblasts, skeletal muscle samples, and mitochondrial cybrids. However, less is known about how these mutations affect other tissues, especially the brain. We have compared OXPHOS protein deficiency patterns in skeletal muscle mitochondria of patients with Leigh (8363G>A), MERRF (8344A>G), and MELAS (3243A>G) syndromes. Both mutations that affect mt-tRNA(Lys) (8363G>A, 8344A>G) resulted in severe combined deficiency of complexes I and IV, compared to an isolated severe defect of complex I in the 3243A>G sample (mt-tRNA(LeuUUR). Furthermore, we compared obtained patterns with those found in the heart, frontal cortex, and liver of 8363G>A and 3243A>G patients. In the frontal cortex mitochondria of both patients, the patterns of OXPHOS deficiencies differed substantially from those observed in other tissues, and this difference was particularly striking for ATP synthase. Surprisingly, in the frontal cortex of the 3243A>G patient, whose ATP synthase level was below the detection limit, the assembly of complex IV, as inferred from 2D-PAGE immunoblotting, appeared to be hindered by some factor other than the availability of mtDNA-encoded subunits.


Assuntos
Encéfalo/enzimologia , Mitocôndrias/enzimologia , Mitocôndrias/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação/genética , RNA de Transferência de Lisina/genética , Adolescente , Criança , Transporte de Elétrons/genética , Eletroforese em Gel Bidimensional , Evolução Fatal , Feminino , Humanos , Immunoblotting , Recém-Nascido , Cinética , Masculino , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/enzimologia , Músculo Esquelético/patologia , Especificidade de Órgãos , Fosforilação Oxidativa , Consumo de Oxigênio , Subunidades Proteicas/metabolismo
4.
J Mol Biol ; 374(2): 506-16, 2007 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-17936786

RESUMO

The Oxa1 protein is a founding member of the evolutionarily conserved Oxa1/Alb3/YidC protein family, which is involved in the biogenesis of membrane proteins in mitochondria, chloroplasts and bacteria. The predicted human homologue, Oxa1l, was originally identified by partial functional complementation of the respiratory growth defect of the yeast oxa1 mutant. Here we demonstrate that both the endogenous human Oxa1l, with an apparent molecular mass of 42 kDa, and the Oxa1l-FLAG chimeric protein localize exclusively to mitochondria in HEK293 cells. Furthermore, human Oxa1l was found to be an integral membrane protein, and, using two-dimensional blue native/denaturing PAGE, the majority of the protein was identified as part of a 600-700 kDa complex. The stable short hairpin (sh)RNA-mediated knockdown of Oxa1l in HEK293 cells resulted in markedly decreased steady-state levels and ATP hydrolytic activity of the F(1)F(o)-ATP synthase and moderately reduced levels and activity of NADH:ubiquinone oxidoreductase (complex I). However, no significant accumulation of corresponding sub-complexes could be detected on blue native immunoblots. Intriguingly, the achieved depletion of Oxa1l protein did not adversely affect the assembly or activity of cytochrome c oxidase or the cytochrome bc(1) complex. Taken together, our results indicate that human Oxa1l represents a mitochondrial integral membrane protein required for the correct biogenesis of F(1)F(o)-ATP synthase and NADH:ubiquinone oxidoreductase.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/biossíntese , Proteínas Nucleares/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Células Cultivadas , Galinhas , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/imunologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Imunofluorescência , Humanos , Hidrólise , Immunoblotting , Imunoglobulina G/imunologia , Imunoprecipitação , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/imunologia , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/farmacologia , Frações Subcelulares
5.
Biochem J ; 383(Pt. 3): 561-71, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15265003

RESUMO

Dysfunction of mitochondrial ATPase (F1F(o)-ATP synthase) due to missense mutations in ATP6 [mtDNA (mitochondrial DNA)-encoded subunit a] is a frequent cause of severe mitochondrial encephalomyopathies. We have investigated a rare mtDNA mutation, i.e. a 2 bp deletion of TA at positions 9205 and 9206 (9205DeltaTA), which affects the STOP codon of the ATP6 gene and the cleavage site between the RNAs for ATP6 and COX3 (cytochrome c oxidase 3). The mutation was present at increasing load in a three-generation family (in blood: 16%/82%/>98%). In the affected boy with severe encephalopathy, a homoplasmic mutation was present in blood, fibroblasts and muscle. The fibroblasts from the patient showed normal aurovertin-sensitive ATPase hydrolytic activity, a 70% decrease in ATP synthesis and an 85% decrease in COX activity. ADP-stimulated respiration and the ADP-induced decrease in the mitochondrial membrane potential at state 4 were decreased by 50%. The content of subunit a was decreased 10-fold compared with other ATPase subunits, and [35S]-methionine labelling showed a 9-fold decrease in subunit a biosynthesis. The content of COX subunits 1, 4 and 6c was decreased by 30-60%. Northern Blot and quantitative real-time reverse transcription-PCR analysis further demonstrated that the primary ATP6--COX3 transcript is cleaved to the ATP6 and COX3 mRNAs 2-3-fold less efficiently. Structural studies by Blue-Native and two-dimensional electrophoresis revealed an altered pattern of COX assembly and instability of the ATPase complex, which dissociated into subcomplexes. The results indicate that the 9205DeltaTA mutation prevents the synthesis of ATPase subunit a, and causes the formation of incomplete ATPase complexes that are capable of ATP hydrolysis but not ATP synthesis. The mutation also affects the biogenesis of COX, which is present in a decreased amount in cells from affected individuals.


Assuntos
Adenina/metabolismo , Adenosina Trifosfatases/fisiologia , DNA Mitocondrial/genética , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , ATPases Mitocondriais Próton-Translocadoras/biossíntese , Deleção de Sequência/genética , Timidina/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/biossíntese , Células Cultivadas , Pré-Escolar , DNA Mitocondrial/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional/métodos , Fibroblastos/química , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/enzimologia , Masculino , Potenciais da Membrana/genética , Mitocôndrias/química , Mitocôndrias/enzimologia , Mutação/genética , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , RNA Mensageiro/biossíntese , Pele/patologia
6.
Toxicol Mech Methods ; 14(1-2): 7-11, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-20021115

RESUMO

Studies of fibroblasts with primary defects in mitochondrial ATP synthase (ATPase) due to heteroplasmic mtDNA mutations in the ATP6 gene, affecting protonophoric function or synthesis of subunit a, show that at high mutation loads, mitochondrial membrane potential DeltaPsi(m) at state 4 is normal, but ADP-induced discharge of DeltaPsi(m) is impaired and ATP synthesis at state 3-ADP is decreased. Increased DeltaPsi(m) and low ATP synthesis is also found when the ATPase content is diminished by altered biogenesis of the enzyme complex. Irrespective of the different pathogenic mechanisms, elevated DeltaPsi(m) in primary ATPase disorders could increase mitochondrial production of reactive oxygen species and decrease energy provision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...