Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0205623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908483

RESUMO

To determine the target of the recently identified lead compound NSC130362 that is responsible for its selective anti-cancer efficacy and safety in normal cells, structure-activity relationship (SAR) studies were conducted. First, NSC13062 was validated as a starting compound for the described SAR studies in a variety of cell-based viability assays. Then, a small library of 1,4-naphthoquinines (1,4-NQs) and quinoline-5,8-diones was tested in cell viability assays using pancreatic cancer MIA PaCa-2 cells and normal human hepatocytes. The obtained data allowed us to select a set of both non-toxic compounds that preferentially induced apoptosis in cancer cells and toxic compounds that induced apoptosis in both cancer and normal cells. Anti-cancer activity of the selected non-toxic compounds was confirmed in viability assays using breast cancer HCC1187 cells. Consequently, the two sets of compounds were tested in multiple cell-based and in vitro activity assays to identify key factors responsible for the observed activity. Inhibition of the mitochondrial electron transfer chain (ETC) is a key distinguishing activity between the non-toxic and toxic compounds. Finally, we developed a mathematical model that was able to distinguish these two sets of compounds. The development of this model supports our conclusion that appropriate quantitative SAR (QSAR) models have the potential to be employed to develop anti-cancer compounds with improved potency while maintaining non-toxicity to normal cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Modelos Moleculares , Modelos Teóricos , Neoplasias/tratamento farmacológico , Relação Quantitativa Estrutura-Atividade , Células Tumorais Cultivadas
2.
ACS Infect Dis ; 3(10): 728-735, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28927276

RESUMO

ELQ-300 is a preclinical antimalarial drug candidate that is active against liver, blood, and transmission stages of Plasmodium falciparum. While ELQ-300 is highly effective when administered in a low multidose regimen, poor aqueous solubility and high crystallinity have hindered its clinical development. To overcome its challenging physiochemical properties, a number of bioreversible alkoxycarbonate ester prodrugs of ELQ-300 were synthesized. These bioreversible prodrugs are converted to ELQ-300 by host and parasite esterase action in the liver and bloodstream of the host. One such alkoxycarbonate prodrug, ELQ-331, is curative against Plasmodium yoelii with a single low dose of 3 mg/kg in a murine model of patent malaria infection. ELQ-331 is at least as fully protective as ELQ-300 in a murine malaria prophylaxis model when delivered 24 h before sporozoite inoculation at an oral dose of 1 mg/kg. Here, we show that ELQ-331 is a promising prodrug of ELQ-300 with improved physiochemical and metabolic properties and excellent potential for clinical formulation.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Pró-Fármacos/farmacologia , Quinolonas/química , Quinolonas/farmacologia , Animais , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Malária/tratamento farmacológico , Camundongos , Mitocôndrias/enzimologia , Estrutura Molecular , Plasmodium falciparum/enzimologia , Pró-Fármacos/química
3.
Clin Cancer Res ; 23(21): 6733-6743, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724664

RESUMO

Purpose: Patients who inherit a pathogenic loss-of-function genetic variant involving one of the four succinate dehydrogenase (SDH) subunit genes have up to an 86% chance of developing one or more cancers by the age of 50. If tumors are identified and removed early in these high-risk patients, they have a higher potential for cure. Unfortunately, many alterations identified in these genes are variants of unknown significance (VUS), confounding the identification of high-risk patients. If we could identify misclassified SDH VUS as benign or pathogenic SDH mutations, we could better select patients for cancer screening procedures and remove tumors at earlier stages.Experimental Design: In this study, we combine data from clinical observations, a functional yeast model, and a computational model to determine the pathogenicity of 22 SDHA VUS. We gathered SDHA VUS from two primary sources: The OHSU Knight Diagnostics Laboratory and the literature. We used a yeast model to identify the functional effect of a VUS on mitochondrial function with a variety of biochemical assays. The computational model was used to visualize variants' effect on protein structure.Results: We were able to draw conclusions on functional effects of variants using our three-prong approach to understanding VUS. We determined that 16 (73%) of the alterations are actually pathogenic, causing loss of SDH function, and six (27%) have no effect upon SDH function.Conclusions: We thus report the reclassification of the majority of the VUS tested as pathogenic, and highlight the need for more thorough functional assessment of inherited SDH variants. Clin Cancer Res; 23(21); 6733-43. ©2017 AACR.


Assuntos
Complexo II de Transporte de Elétrons/genética , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Succinato Desidrogenase/genética , Detecção Precoce de Câncer , Complexo II de Transporte de Elétrons/química , Complexo II de Transporte de Elétrons/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/enzimologia , Neoplasias/patologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo
4.
Antimicrob Agents Chemother ; 60(8): 4972-82, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27297476

RESUMO

Endochin-like quinolones (ELQs) are potent and specific inhibitors of cytochrome bc1 from Plasmodium falciparum and Toxoplasma gondii and show promise for novel antiparasitic drug development. To determine whether the mitochondrial electron transport chain of Leishmania parasites could be targeted similarly for drug development, we investigated the activity of 134 structurally diverse ELQs. A cohort of ELQs was selectively toxic to amastigotes of Leishmania mexicana and L. donovani, with 50% inhibitory concentrations (IC50s) in the low micromolar range, but the structurally similar hydroxynaphthoquinone buparvaquone was by far the most potent inhibitor of electron transport, ATP production, and intracellular amastigote growth. Cytochrome bc1 is thus a promising target for novel antileishmanial drugs, and further improvements on the buparvaquone scaffold are warranted for development of enhanced therapeutics.


Assuntos
Antiprotozoários/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Leishmania/efeitos dos fármacos , Quinolonas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Leishmania mexicana/efeitos dos fármacos , Leishmania mexicana/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , NAD/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Antimicrob Agents Chemother ; 60(8): 4853-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270285

RESUMO

Antimalarial combination therapies play a crucial role in preventing the emergence of drug-resistant Plasmodium parasites. Although artemisinin-based combination therapies (ACTs) comprise the majority of these formulations, inhibitors of the mitochondrial cytochrome bc1 complex (cyt bc1) are among the few compounds that are effective for both acute antimalarial treatment and prophylaxis. There are two known sites for inhibition within cyt bc1: atovaquone (ATV) blocks the quinol oxidase (Qo) site of cyt bc1, while some members of the endochin-like quinolone (ELQ) family, including preclinical candidate ELQ-300, inhibit the quinone reductase (Qi) site and retain full potency against ATV-resistant Plasmodium falciparum strains with Qo site mutations. Here, we provide the first in vivo comparison of ATV, ELQ-300, and combination therapy consisting of ATV plus ELQ-300 (ATV:ELQ-300), using P. yoelii murine models of malaria. In our monotherapy assessments, we found that ATV functioned as a single-dose curative compound in suppressive tests whereas ELQ-300 demonstrated a unique cumulative dosing effect that successfully blocked recrudescence even in a high-parasitemia acute infection model. ATV:ELQ-300 therapy was highly synergistic, and the combination was curative with a single combined dose of 1 mg/kg of body weight. Compared to the ATV:proguanil (Malarone) formulation, ATV:ELQ-300 was more efficacious in multiday, acute infection models and was equally effective at blocking the emergence of ATV-resistant parasites. Ultimately, our data suggest that dual-site inhibition of cyt bc1 is a valuable strategy for antimalarial combination therapy and that Qi site inhibitors such as ELQ-300 represent valuable partner drugs for the clinically successful Qo site inhibitor ATV.


Assuntos
Antimaláricos/farmacologia , Atovaquona/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Quinolonas/farmacologia , Animais , Combinação de Medicamentos , Quimioterapia Combinada/métodos , Feminino , Camundongos , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Proguanil/farmacologia
6.
J Exp Med ; 213(7): 1307-18, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27270894

RESUMO

Human babesiosis is a tick-borne multisystem disease caused by Babesia species of the apicomplexan phylum. Most clinical cases and fatalities of babesiosis are caused by Babesia microti Current treatment for human babesiosis consists of two drug combinations, atovaquone + azithromycin or quinine + clindamycin. These treatments are associated with adverse side effects and a significant rate of drug failure. Here, we provide evidence for radical cure of experimental babesiosis in immunodeficient mice using a combination of an endochin-like quinolone (ELQ) prodrug and atovaquone. In vivo efficacy studies in mice using ELQ-271, ELQ-316, and the ELQ-316 prodrug, ELQ-334, demonstrated excellent growth inhibitory activity against the parasite, with potency equal to that of orally administered atovaquone at 10 mg/kg. Analysis of recrudescent parasites after ELQ or atovaquone monotherapy identified genetic substitutions in the Qi or Qo sites, respectively, of the cytochrome bc1 complex. Impressively, a combination of ELQ-334 and atovaquone, at doses as low as 5.0 mg/kg each, resulted in complete clearance of the parasite with no recrudescence up to 122 d after discontinuation of therapy. These results will set the stage for future clinical evaluation of ELQ and atovaquone combination therapy for treatment of human babesiosis.


Assuntos
Atovaquona/farmacologia , Babesia microti/imunologia , Babesiose/tratamento farmacológico , Síndromes de Imunodeficiência/parasitologia , Pró-Fármacos/farmacologia , Quinolonas/farmacologia , Animais , Babesiose/genética , Babesiose/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Camundongos , Camundongos SCID
7.
Antimicrob Agents Chemother ; 59(9): 5555-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26124159

RESUMO

ELQ-300 is a preclinical candidate that targets the liver and blood stages of Plasmodium falciparum, as well as the forms that are crucial to transmission of disease: gametocytes, zygotes, and ookinetes. A significant obstacle to the clinical development of ELQ-300 is related to its physicochemical properties. Its relatively poor aqueous solubility and high crystallinity limit absorption to the degree that only low blood concentrations can be achieved following oral dosing. While these low blood concentrations are sufficient for therapy, the levels are too low to establish an acceptable safety margin required by regulatory agencies for clinical development. One way to address the challenging physicochemical properties of ELQ-300 is through the development of prodrugs. Here, we profile ELQ-337, a bioreversible O-linked carbonate ester prodrug of the parent molecule. At the molar equivalent dose of 3 mg/kg of body weight, the delivery of ELQ-300 from ELQ-337 is enhanced by 3- to 4-fold, reaching a maximum concentration of drug in serum (C max) of 5.9 µM by 6 h after oral administration, and unlike ELQ-300 at any dose, ELQ-337 provides single-dose cures of patent malaria infections in mice at low-single-digit milligram per kilogram doses. Our findings show that the prodrug strategy represents a viable approach to overcome the physicochemical limitations of ELQ-300 to deliver the active drug to the bloodstream at concentrations sufficient for safety and toxicology studies, as well as achieving single-dose cures.


Assuntos
Antimaláricos/química , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Quinolonas/uso terapêutico , Animais , Cristalografia por Raios X , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Pró-Fármacos/química , Quinolonas/química
8.
Am J Trop Med Hyg ; 92(6): 1195-201, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25918204

RESUMO

Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development.


Assuntos
Antimaláricos/uso terapêutico , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Éteres Fenílicos/uso terapêutico , Quinolonas/uso terapêutico , Animais , Antimaláricos/administração & dosagem , Resistência a Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Camundongos , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Plasmodium yoelii/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 59(4): 1977-82, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25605352

RESUMO

The cytochrome bc1 complex (cyt bc1) is the third component of the mitochondrial electron transport chain and is the target of several potent antimalarial compounds, including the naphthoquinone atovaquone (ATV) and the 4(1H)-quinolone ELQ-300. Mechanistically, cyt bc1 facilitates the transfer of electrons from ubiquinol to cytochrome c and contains both oxidative (Qo) and reductive (Qi) catalytic sites that are amenable to small-molecule inhibition. Although many antimalarial compounds, including ATV, effectively target the Qo site, it has been challenging to design selective Qi site inhibitors with the ability to circumvent clinical ATV resistance, and little is known about how chemical structure contributes to site selectivity within cyt bc1. Here, we used the proposed Qi site inhibitor ELQ-300 to generate a drug-resistant Plasmodium falciparum clone containing an I22L mutation at the Qi region of cyt b. Using this D1 clone and the Y268S Qo mutant strain, P. falciparum Tm90-C2B, we created a structure-activity map of Qi versus Qo site selectivity for a series of endochin-like 4(1H)-quinolones (ELQs). We found that Qi site inhibition was associated with compounds containing 6-position halogens or aryl 3-position side chains, while Qo site inhibition was favored by 5,7-dihalogen groups or 7-position substituents. In addition to identifying ELQ-300 as a preferential Qi site inhibitor, our data suggest that the 4(1H)-quinolone scaffold is compatible with binding to either site of cyt bc1 and that minor chemical changes can influence Qo or Qi site inhibition by the ELQs.


Assuntos
Antimaláricos/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Quinolonas/farmacologia , Animais , Citocromos b/genética , Citocromos b/metabolismo , Resistência a Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/genética , Modelos Moleculares , Mutação/genética , Plasmodium falciparum/genética , Ligação Proteica , Relação Estrutura-Atividade
10.
J Med Chem ; 57(9): 3818-34, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24720377

RESUMO

The historical antimalarial compound endochin served as a structural lead for optimization. Endochin-like quinolones (ELQ) were prepared by a novel chemical route and assessed for in vitro activity against multidrug resistant strains of Plasmodium falciparum and against malaria infections in mice. Here we describe the pathway to discovery of a potent class of orally active antimalarial 4(1H)-quinolone-3-diarylethers. The initial prototype, ELQ-233, exhibited low nanomolar IC50 values against all tested strains including clinical isolates harboring resistance to atovaquone. ELQ-271 represented the next critical step in the iterative optimization process, as it was stable to metabolism and highly effective in vivo. Continued analoging revealed that the substitution pattern on the benzenoid ring of the quinolone core significantly influenced reactivity with the host enzyme. This finding led to the rational design of highly selective ELQs with outstanding oral efficacy against murine malaria that is superior to established antimalarials chloroquine and atovaquone.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinolonas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Descoberta de Drogas , Células HEK293 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Quinolonas/síntese química , Quinolonas/química , Ratos , Espectrometria de Massas por Ionização por Electrospray
11.
J Biol Chem ; 288(41): 29954-64, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23986453

RESUMO

The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 µM for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 µM for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.


Assuntos
Leishmania donovani/enzimologia , Pentosiltransferases/metabolismo , Proteínas de Protozoários/metabolismo , Pirimidinas/biossíntese , Uracila/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cromatografia em Gel , Estabilidade Enzimática , Retroalimentação Fisiológica/efeitos dos fármacos , Fluoruracila/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Leishmania donovani/genética , Leishmania donovani/metabolismo , Mutação , Pentosiltransferases/química , Pentosiltransferases/genética , Fosforribosil Pirofosfato/metabolismo , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Pirimidinas/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria , Especificidade por Substrato , Temperatura , Tiouracila/análogos & derivados , Tiouracila/metabolismo
12.
Sci Transl Med ; 5(177): 177ra37, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23515079

RESUMO

The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite's life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite's mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.


Assuntos
Antimaláricos/farmacologia , Quinolonas/farmacologia , Animais , Antimaláricos/química , Atovaquona/química , Atovaquona/farmacologia , Resistência a Medicamentos , Sinergismo Farmacológico , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Proguanil/química , Proguanil/farmacologia , Piridonas/química , Piridonas/farmacologia , Quinolonas/química
13.
Proc Natl Acad Sci U S A ; 109(39): 15936-41, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23019377

RESUMO

Toxoplasma gondii is a widely distributed protozoan pathogen that causes devastating ocular and central nervous system disease. We show that the endochin-like quinolone (ELQ) class of compounds contains extremely potent inhibitors of T. gondii growth in vitro and is effective against acute and latent toxoplasmosis in mice. We screened 50 ELQs against T. gondii and selected two lead compounds, ELQ-271 and ELQ-316, for evaluation. ELQ-271 and ELQ-316, have in vitro IC(50) values of 0.1 nM and 0.007 nM, respectively. ELQ-271 and ELQ-316 have ED(50) values of 0.14 mg/kg and 0.08 mg/kg when administered orally to mice with acute toxoplasmosis. Moreover, ELQ-271 and ELQ-316 are highly active against the cyst form of T. gondii in mice at low doses, reducing cyst burden by 76-88% after 16 d of treatment. To investigate the ELQ mechanism of action against T. gondii, we demonstrate that endochin and ELQ-271 inhibit cytochrome c reduction by the T. gondii cytochrome bc(1) complex at 8 nM and 31 nM, respectively. We also show that ELQ-271 inhibits the Saccharomyces cerevisiae cytochrome bc(1) complex, and an M221Q amino acid substitution in the Q(i) site of the protein leads to >100-fold resistance. We conclude that ELQ-271 and ELQ-316 are orally bioavailable drugs that are effective against acute and latent toxoplasmosis, likely acting as inhibitors of the Q(i) site of the T. gondii cytochrome bc(1) complex.


Assuntos
Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Quinolinas/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Feminino , Humanos , Camundongos , Proteínas de Protozoários/antagonistas & inibidores , Ratos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Toxoplasma/enzimologia , Toxoplasmose/enzimologia
14.
J Biol Chem ; 286(20): 18139-48, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454570

RESUMO

Production of reactive oxygen species (ROS) induces oxidative damages, decreases cellular energy conversion efficiencies, and induces metabolic diseases in humans. During respiration, cytochrome bc(1) efficiently oxidizes hydroquinone to quinone, but how it performs this reaction without any leak of electrons to O(2) to yield ROS is not understood. Using the bacterial enzyme, here we show that a conserved Tyr residue of the cytochrome b subunit of cytochrome bc(1) is critical for this process. Substitution of this residue with other amino acids decreases cytochrome bc(1) activity and enhances ROS production. Moreover, the Tyr to Cys mutation cross-links together the cytochrome b and iron-sulfur subunits and renders the bacterial enzyme sensitive to O(2) by oxidative disruption of its catalytic [2Fe-2S] cluster. Hence, this Tyr residue is essential in controlling unproductive encounters between O(2) and catalytic intermediates at the quinol oxidation site of cytochrome bc(1) to prevent ROS generation. Remarkably, the same Tyr to Cys mutation is encountered in humans with mitochondrial disorders and in Plasmodium species that are resistant to the anti-malarial drug atovaquone. These findings illustrate the harmful consequences of this mutation in human diseases.


Assuntos
Citocromos b/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Rhodobacter capsulatus/enzimologia , Tirosina/metabolismo , Substituição de Aminoácidos , Citocromos b/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Humanos , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Plasmodium/enzimologia , Plasmodium/genética , Rhodobacter capsulatus/genética , Tirosina/genética
15.
Nature ; 465(7296): 311-5, 2010 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-20485428

RESUMO

Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.


Assuntos
Antimaláricos/análise , Antimaláricos/farmacologia , Descoberta de Drogas , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Animais , Antimaláricos/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos/efeitos dos fármacos , Quimioterapia Combinada , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Fenótipo , Filogenia , Plasmodium falciparum/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
16.
Mol Biochem Parasitol ; 159(1): 64-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18308406

RESUMO

Mitochondrial electron transport is essential for survival in Plasmodium falciparum, making the cytochrome (cyt) bc(1) complex an attractive target for antimalarial drug development. Here we report that P. falciparum cultivated in the presence of a novel cyt bc(1) inhibitor underwent a fundamental transformation in biochemistry to a phenotype lacking a requirement for electron transport through the cyt bc(1) complex. Growth of the drug-selected parasite clone (SB1-A6) is robust in the presence of diverse cyt bc(1) inhibitors, although electron transport is fully inhibited by these same agents. This transformation defies expected molecular-based concepts of drug resistance, has important implications for the study of cyt bc(1) as an antimalarial drug target, and may offer a glimpse into the evolutionary future of Plasmodium.


Assuntos
Acridinas , Antimaláricos/farmacologia , Resistência a Medicamentos , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Transporte de Elétrons , Plasmodium falciparum/efeitos dos fármacos , Acridinas/química , Acridinas/farmacologia , Animais , Atovaquona/farmacologia , Resistência a Medicamentos/genética , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Seleção Genética , Inoculações Seriadas
17.
J Biol Chem ; 281(50): 38459-65, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17008316

RESUMO

The cytochrome bc complexes found in mitochondria, chloroplasts and many bacteria play critical roles in their respective electron transport chains. The quinol oxidase (Q(o)) site in this complex oxidizes a hydroquinone (quinol), reducing two one-electron carriers, a low potential cytochrome b heme and the "Rieske" iron-sulfur cluster. The overall electron transfer reactions are coupled to transmembrane translocation of protons via a "Q-cycle" mechanism, which generates proton motive force for ATP synthesis. Since semiquinone intermediates of quinol oxidation are generally highly reactive, one of the key questions in this field is: how does the Q(o) site oxidize quinol without the production of deleterious side reactions including superoxide production? We attempt to test three possible general models to account for this behavior: 1) The Q(o) site semiquinone (or quinol-imidazolate complex) is unstable and thus occurs at a very low steady-state concentration, limiting O(2) reduction; 2) the Q(o) site semiquinone is highly stabilized making it unreactive toward oxygen; and 3) the Q(o) site catalyzes a quantum mechanically coupled two-electron/two-proton transfer without a semiquinone intermediate. Enthalpies of activation were found to be almost identical between the uninhibited Q-cycle and superoxide production in the presence of antimycin A in wild type. This behavior was also preserved in a series of mutants with altered driving forces for quinol oxidation. Overall, the data support models where the rate-limiting step for both Q-cycle and superoxide production is essentially identical, consistent with model 1 but requiring modifications to models 2 and 3.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Superóxidos/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Cinética , Mutagênese Sítio-Dirigida , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...