Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(8): 2054-2067, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37906458

RESUMO

The use of treatment wetlands (TWs) presents particular challenges in regions with sub-zero winter temperatures, due to reduced biological activity and risk of pipe breakage or clogging due to freezing. We studied the vertical temperature distribution in four pilot-scale TWs exposed to winter temperatures in order to determine the impact of operational system parameters and the role of insulation on heat conservation inside the filtering bed. The overall temperature pattern was similar in all wetlands, with a trend of increasing temperature from the surface toward the bottom during the cold season. No freezing was detected in the wetlands despite average daily temperatures as low as -20 °C. Influent water temperature and hydraulic loading had a stronger influence on TW temperatures in winter than air temperature. The vertical distribution of temperatures in TWs is more sensitive to hydraulic loading variation in the percolating operating condition than in the saturated flow with forced aeration configuration. Our results suggest that TW systems can remain operational under cold winter conditions provided the surface is properly insulated by vegetation, mulch and/or snow.


Assuntos
Eliminação de Resíduos Líquidos , Áreas Alagadas , Congelamento , Eliminação de Resíduos Líquidos/métodos , Temperatura , Temperatura Baixa
2.
J Environ Manage ; 326(Pt B): 116839, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36435132

RESUMO

The infiltration of secondary treated effluent (STE) into the soil downstream of wastewater treatment plants is becoming increasingly common in a climate change context. In STE infiltration, STE is discharged onto the soil over a large surface allowing for a gradual infiltration of the water. This paper investigates a novel time-lapse electrical resistivity tomography strategy to evaluate the impact of STE infiltration on the water pathways of two planted loamy-soil trenches located in a Fluvisol region in southwestern France. The system has been monitored for 3 years using discontinuous monitoring of electrical resistivity tomography during four saline tracer tests. Results show that: 1) the new methodology has successfully highlighted the evolution of water pathways in the soil over time; 2) such evolution is in agreement with reeds root distribution in the trenches which seems to be affected by water quality i.e. sludge losses and TSS, for this study case. Indeed, for the infiltration trench receiving STE with lower pollution levels (2.2 mg TSS. L-1, 26 mg COD. L-1), the infiltration capacity is maintained over the years (4-6 mm h-1) and reed roots developed deeper in the soil. A sludge deposit present at the bottom of the second infiltration trench receiving higher pollution levels (7.2 mg TSS. L-1, 45 mg COD. L-1, plus episodic sludge release) could lead roots to develop close to the surface affecting the infiltration capacity which did not evolve over time. This work highlights the importance of long-term flow pathway monitoring in understanding the hydraulic behavior of infiltration surfaces submitted to STE.


Assuntos
Esgotos , Purificação da Água , Imagem com Lapso de Tempo , Solo , Purificação da Água/métodos , França
3.
Sci Total Environ ; 816: 151589, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34774936

RESUMO

In France, soil-based constructed wetlands for the discharge of treated wastewater have become a popular technique to both reduce flow to surface receiving water bodies and perform complementary treatments. This study focuses on the fate of phosphorus in three different soils, as well as its assimilation by Phragmites australis. The experimental set-up consisted of three lysimeters containing three soils selected to be representative of those typically found near wastewater treatment plants (i.e. a silt loam Fluvisol, a sandy loam Fluvisol and a sandy-clay loam Technosol). Lysimeters are undisturbed soil monoliths (1.5 m3 in volume), whose masses are continuously monitored in order to obtain an accurate water mass balance. The lysimeters here were intermittently fed for 3.5 days and then left to rest for 3.5 days. The experiment lasted 26 months, including 18 months of feeding with phosphorus (PO4-P, TP) fluxes in and out being monitored along with water content, oxygen content and redox potential at various depths. The quantities of phosphorus stored in the soils and assimilated in the Phragmites australis were measured. Phosphorus fractionation in soils was performed to better understand its distribution and potential remobilization. Low phosphate concentrations were measured at the outlets of all three lysimeters, thereby highlighting satisfactory phosphorus retention in the three soils (removal efficiencies >90%). A significant amount of phosphorus can be exported by harvesting Phragmites australis aerial parts (26%, 17% and 13% of the yearly incoming phosphorus mass for the silt loam Fluvisol, sandy loam Fluvisol and sandy-clay loam Technosol, respectively). The fractionation step served to determine that the phosphorus retained in the soil was primarily bound to iron oxides/hydroxides, calcium and clay. Moreover, it was found to be preferable to hold oxidizing (aerobic) conditions and pH close to neutral in order to maintain conditions under which the complexes formed with phosphorus remain stable.


Assuntos
Fósforo , Solo , Argila , Águas Residuárias , Áreas Alagadas
4.
Water Res ; 201: 117349, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171643

RESUMO

Seven treatment wetlands and a municipal wastewater treatment plant (WWTP) were weekly monitored over the course of one year for removal of conventional wastewater parameters, selected micropollutants (caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine) and biological effects. The treatment wetland designs investigated include a horizontal subsurface flow (HF) wetland and a variety of wetlands with intensification (aeration, two-stages, or reciprocating flow). Complementary to the common approach of analyzing individual chemicals, in vitro bioassays can detect the toxicity of a mixture of known and unknown components given in a water sample. A panel of five in vitro cell-based reporter gene bioassays was selected to cover environmentally relevant endpoints (AhR: indicative of activation of the aryl hydrocarbon receptor; PPARγ: binding to the peroxisome proliferator-activated receptor gamma; ERα: activation of the estrogen receptor alpha; GR: activation of the glucocorticoid receptor; oxidative stress response). While carbamazepine was persistent in the intensified treatment wetlands, mean monthly mass removal of up to 51% was achieved in the HF wetland. The two-stage wetland system showed highest removal efficacy for all biological effects (91% to >99%). The removal efficacy for biological effects ranged from 56% to 77% for the HF wetland and 60% to 99% for the WWTP. Bioanalytical equivalent concentrations (BEQs) for AhR, PPARγ, and oxidative stress response were often below the recommended effect-based trigger (EBT) values for surface water, indicating the great benefit for using nature-based solutions for water treatment. Intensified treatment wetlands remove both individual micropollutants and mixture effects more efficiently than conventional (non-aerated) HF wetlands, and in some cases, the WWTP.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Diclofenaco , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
5.
Sci Total Environ ; 713: 136510, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31958721

RESUMO

French Vertical Flow (VF) treatment wetlands receive raw wastewater and provide simultaneous sludge and wastewater treatment. For proper sludge handling, the treatment wetland must be designed adequately and specific operational conditions must be maintained. When these conditions are not met, accumulation of biosolids may lead to clogging. Filtration in French VF Treatment wetlands is governed by mechanisms at the pore-scale. They must be better understood to predict reliably biosolid accumulation. X-ray Computed Tomography (Xray-CT) is a promising technique to characterize in detail the morphology of the filtering media in treatment wetlands. In order to set a solid basis for the use of Xray-CT, the spatial representativity of measurements must be assessed. This issue is addressed in this study by successively analyzing spatial properties at the filter scale using Frequency Domain Electromagnetic Measurements (FDEMs), and at the pore scale using Xray-CT. A map of the electric conductivity at the surface of a French VF Treatment wetland is obtained by FDEM that indicates a homogeneous distribution of biosolids to which electrical conductivity is highly correlated. Different morphological properties were computed from Xray-CT after phase segmentation: phase volume fraction profiles, Specific Surface Area profiles and pore size distributions. Samples show several similarities of pore scale properties obtained by Xray-CT independently of the sampling region and especially the same vertical gradients. FDEM measurements and Xray-CT analysis are in agreement to indicate a good influent distribution at the surface of a full-scale mature French VF Treatment wetland. A criterion to define the limits of the deposit layer and gravel layer is introduced. This division allows to compare layers independently. Finally, a 2D-REV analysis suggests that the selected sample diameter of 5 cm is large enough to be representative of the heterogeneous distribution of phases at the pore-scale as long as no Phragmites are present.


Assuntos
Áreas Alagadas , Tomografia por Raios X , Eliminação de Resíduos Líquidos , Águas Residuárias
6.
HardwareX ; 8: e00122, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35498256

RESUMO

The use of electrical resistivity tomography in laboratory or field experiments for environmental purposes has been increasing in recent years. The development of commercial devices has thus far focused on the quality of measurements and their robustness in all field cases. However, both their costs and lack of flexibility to adapt to specific applications have limited their prevalence in the environmental sector. This article presents the development of a low-cost, open hardware resistivity meter to provide the scientific community with a robust and flexible tool for small-scale experiments. Called OhmPi, this basic resistivity meter features current injection and measurement functions associated with a multiplexer that allows performing automatic measurements with up to 32 electrodes (at a cost of less than $500). The device was first tested using a soil-analog electrical circuit to verify the reliability and robustness of the measurements. Results show that OhmPi offers a wide range of resistance measurements, from 0.2 to 1000 O, for contact resistances between 100 and 5000 O. Measurements were then carried out on a small field experiment, in demonstrating good stability of the OhmPi measurements, as well as a strong correlation with the output of a commercial reference instrument.

7.
Water Res ; 157: 321-334, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30959335

RESUMO

Mechanical aeration is commonly used to improve the overall treatment efficacy of constructed wetlands. However, the quantitative relationships of air flow rate (AFR), water temperature, field oxygen transfer and treatment performance have not been analyzed in detail until today. In this study, a reactive transport model based on dual-permeability flow and biokinetic formulations of the Constructed Wetland Model No. 1 (CWM1) was developed and extented to 1) simulate oxygen transfer and treatment performance for organic carbon and nitrogen of two pilot-scale horizontal flow (HF) aerated wetlands (Test and Control) treating domestic sewage, and, 2) to investigate the dependence of oxygen transfer and treatment performance on AFR and water temperature. Both pilot-scale wetlands exhibited preferential flow patters and high treatment performance for chemical oxygen demand (COD) and NH4-N at AFRs of 128-700 L m-2 h-1. A reduction of the AFR in the Test system from 128 to 72 L h-1 m-2 substantially inhibited NH4-N removal. Conservative tracer transport as well as reactive transport of dissolved oxygen (DO), soluble and total chemical oxygen demand (CODs, CODt), NH4-N and NOx-N measured in pilot-scale experiments were simulated with acceptable accuracy (E1¯=0.39±0.26). An equation to estimate the volumetric oxygen transfer coefficient was found to be: kLa,20=0.511ln(AFR). Simulated treatment performance depended on kLa,20 in a non-linear manner. A local sensitivity analysis of the calibrated parameters revealed porosity, hydraulic permeability and dispersion length of the fast flow field as well as kLa,20 as most important. An optimal AFR for a spatially and temporally continuous aeration pattern for treatment wetlands treating similar influent was estimated to 150-200 L h-1 m-2. This study provides insights into aeration mechanisms of aerated treatment wetlands and highlights the benefits of process modeling for in-depth system analysis.


Assuntos
Oxigênio , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Carbono , Nitrogênio
8.
Sci Total Environ ; 658: 178-188, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30577016

RESUMO

Computed Tomography is a non-destructive technique often used in earth sciences for the description of porous media at the pore scale. This paper shows the feasibility of this technique to obtain 3D descriptions of filtering media in Vertical Flow Treatment Wetlands (VFTW). Three different samples from two full-scale VFTW were scanned. The samples vary in moisture content and gravel size distribution. The 3D images show three characteristic phases of unsaturated media: voids, fouling material and gravel. The gray contrast level is good enough to perform phase segmentation successfully using region growing algorithms. In this study the results from segmentation are used (i) to compute profiles of phase volume fraction and specific surface at high resolution, (ii) to observe 3D distribution of isolated elements, (iii) and to draw the void's skeleton and to perform a percolation pathway study. This method highlights the presence of a transition zone between the deposit cake and the dense gravel layer. In this zone, mechanical interactions between gravels and filtered solids tend to promote a heterogeneous layer of gravel, fouling material and open porosity. The presence of isolated gravels in the deposit layer is clearly evidenced. The effect of drying to enhance the contrast between phases has been analyzed for one sample by a direct comparison of images obtained before and after drying. The resulting opening of the void phase tends to increase significantly the void-fouling material specific surface and the number and size of percolating pathways computed as the skeleton of the void phase. Finally, a first analysis of filtration processes is proposed. It consists in analyzing the percolation pathways for a class of void size by applying the distance map and skeleton concepts to the void phase.

9.
Water Sci Technol ; 76(1-2): 124-133, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28708617

RESUMO

French vertical flow constructed wetlands (VFCW) treating raw wastewater have been developed successfully over the last 30 years. Nevertheless, the two-stage VFCWs require a total filtration area of 2-2.5 m2/P.E. Therefore, implementing a one-stage system in which treatment performances reach standard requirements is of interest. Biho-Filter® is one of the solutions developed in France by Epur Nature. Biho-Filter® is a vertical flow system with an unsaturated layer at the top and a saturated layer at the bottom. The aim of this study was to assess this new configuration and to optimize its design and operating conditions. The hydraulic functioning and pollutant removal efficiency of three different Biho-Filter® plants commissioned between 2011 and 2012 were studied. Outlet concentrations of the most efficient Biho-Filter® configuration are 70 mg/L, 15 mg/L, 15 mg/L and 25 mg/L for chemical oxygen demand (COD), 5-day biological oxygen demand (BOD5), total suspended solids (TSS) and total Kjeldahl nitrogen (TKN), respectively. Up to 60% of total nitrogen is removed. Nitrification efficiency is mainly influenced by the height of the unsaturated zone and the recirculation rate. The optimum recirculation rate was found to be 100%. Denitrification in the saturated zone works at best with an influent COD/NO3-N ratio at the inflet of this zone larger than 2 and a hydraulic retention time longer than 0.75 days.


Assuntos
Filtração/métodos , Nitrogênio/química , Águas Residuárias/química , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Desnitrificação , Filtração/instrumentação , França , Nitrificação , Eliminação de Resíduos Líquidos , Purificação da Água/instrumentação , Áreas Alagadas
10.
Environ Technol ; 38(1): 53-64, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27255546

RESUMO

Over the last 10 years soil-based constructed wetlands for discharge of treated wastewater (TWW) are commonly presented as a valuable option to provide tertiary treatment. The uncomplete knowledge in soil modifications and a lack of clear design practices laid the foundation of this work. The aim of this study was to determine optimal hydraulic loads and to observe the main critical parameters affecting treating performances and hydraulic loads acceptance. For this purpose, a soil rich in clay and backfill was chosen to perform column infiltration tests with TWW. Two loading rates and two loading modes were compared to study the influence of an intermittent feeding. Inlet and outlet waters were periodically analysed and columns were instrumented with balances, tensiometers, O2 and temperature probes. Soil physico-chemical characteristics were also taken into account to better understand the modification of the soil. One of the main expectations of tertiary treatment is to improve phosphate removal. A particular attention was thus given to phosphorus retention. The interest of an intermittent feeding in presence of a soil with high clay content was showed. This study highlighted that an intermittent feeding could make possible the use of a clay-rich soil for water infiltration.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Silicatos de Alumínio/análise , Argila , Fósforo/análise , Solo/química , Águas Residuárias/análise , Poluentes Químicos da Água/análise
11.
Environ Technol ; 37(24): 3146-50, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27163965

RESUMO

Lifespan and well-operation of French vertical flow constructed wetlands (VFCW) depend on how the organic deposit forms and evolves within filter media. This study aimed to demonstrate the feasibility of thin section methods application to VFCW. Unfortunately, constructed wetland scientists are currently missing tools to observe how deposit physically occupies pore space. Thin sections allow a direct and undisturbed observation of filter media and deposit. Undisturbed samples were taken from the surface of an experimental VFCW. Water was exchanged with a solvent before resin impregnation to preserve the sample structure. Several thin sections were successfully produced. Results highlight that deposit significantly reduces pore space. It forms a structured media crossed by large channels which can participate to fast gravity-driven flow and media oxygenation. The deposit structure seemed also made of a large bundle of small pores less than 100 µm in radius. They can effectively store water by capillarity and provide a large surface for potential pollutant adsorption. An image analysis of thin sections provided hints at understanding the structuration of the porous media linked to organic matter deposition.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Áreas Alagadas , Filtração , Porosidade
12.
J Environ Manage ; 165: 271-279, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454071

RESUMO

Horizontal subsurface Flow Constructed Wetlands (HF CWs) are biofilters planted with aquatic macrophytes within which wastewater is treated mostly through contact with bacterial biofilms. The high concentrations of organic carbon and nutrients being transported leads to high bacterial biomass production, which decreases the flow capacity of the porous material (bioclogging). In severe bioclogging scenarios, overland flow may take place, reducing overall treatment performance. In this work we developed a mathematical model using COMSOL Multiphysics™ and MATLAB(®) to simulate bioclogging effects in HF CWs. Variably saturated subsurface flow and overland flow were described using the Richards equation. To simplify the inherent complexity of the processes involved in bioclogging development, only one bacterial group was considered, and its growth was described using a Monod equation. Bioclogging effects on the hydrodynamics were taken into account by using a conceptual model that affects the value of Mualem's unsaturated relative permeability. Simulation results with and without bioclogging were compared to showcase the impact of this process on the overall functioning of CWs. The two scenarios rendered visually different bacteria distributions, flow and transport patterns, showing the necessity of including bioclogging effects on CWs models. This work represents one of the few studies available on bioclogging in variably saturated conditions, and the presented model allows simulating the interaction between overland and subsurface flow occurring in most HF CWs. Hence, this work gets us a step closer to being able to describe CWs functioning in an integrated way using mathematical models.


Assuntos
Biofilmes/crescimento & desenvolvimento , Modelos Teóricos , Águas Residuárias/microbiologia , Microbiologia da Água , Áreas Alagadas , Biomassa , Cinética , Permeabilidade , Porosidade , Movimentos da Água , Purificação da Água/métodos
13.
Bioresour Technol ; 116: 161-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22609671

RESUMO

This work was designed to study the hydraulic properties of sludge deposit, focusing on the impact of operating conditions (i.e. loads and feeding frequencies) on air entrance (aerobic mineralization optimization) into the sludge deposit. The studied sludge deposits came from six 2m(2) pilot-scale SDRBs that had been in operation for 50 months with three different loads of 30, 50, and 70 kg of SSm(-2) y(-1). Two influents were assessed (i.e. activated sludge and septage) presenting different characteristics (i.e. pollutant contents, physical properties...). Two experimental approaches were employed based on establishing the water retention curve (capillary pressure versus volumetric water content) and the hydrotextural diagram to determine the hydraulic properties of sludge deposit. The study obtained valuable information for optimizing operating conditions, specifically for efficient management of loading frequency to optimize aerobic conditions within the sludge deposit.


Assuntos
Reatores Biológicos , Fenômenos Mecânicos , Poaceae/química , Esgotos/química , Água/química , Biodegradação Ambiental , Dessecação , Projetos Piloto , Pressão , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...