Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10656, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920771

RESUMO

Given the limited information on prey use during the marine residency period for Atlantic salmon, scales were collected from salmon at return to the River Namsen (Norway) for spawning after 1 year at sea, and scale material from the first and second summer marine feeding periods was analysed using stable isotope methods to understand dynamics of their trophic ecology. As the salmon increased in size from the first to second summer, they reduced their feeding niche and specialised more (narrowed the δ13C range) and increased their dependency on higher tropic level (δ15N) prey, likely fish. Changes in δ13C indicated a consistent pattern of movement towards the north and west between summer feeding periods. Hence, salmon during their first year at sea may have a migration route roughly resembling that of previous spawners, as inferred from earlier tagging studies. Feeding conditions and nutrient composition during the last summer at sea, i.e. in the months before returning to the river for spawning, impacted final body size and within-season timing of return. Fish undergoing the largest trophic niche shift (δ13C and δ15N combined) between summer feeding periods, returned earliest. The earliest returning fish had the fastest specific growth rates at sea. Hence, salmon encountering abundant high-quality fish food during the marine migration, particularly during the last months, may reach a size and energetic state whereby it is better to return early to a safer environment in freshwater than risk being eaten by a big predator at sea. Both trophic status (δ15N), resource use (δ13C) and growth rates were significantly correlated between feeding periods. Nutrient composition during the first summer at sea did not impact the fish body length after the following winter, but growth conditions during the first summer evidenced carry-over effects from the first to the second summer of feeding.

2.
J Fish Biol ; 102(2): 465-478, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36433764

RESUMO

The global population of European eel (Anguilla anguilla) is rapidly declining, and migration barriers in rivers are believed to be one of several key causes. While progress has been made in the development of bypass solutions, they are often constructed based on a limited knowledge of swimming behaviour. A bypass close to the stream bed is often recommended at fish passage facilities to accommodate downstream eel migration. The results of this recommendation are poorly studied, and the few studies that exist show varying bypass efficiencies. The current study used acoustic telemetry with depth sensors to explore the three-dimensional migratory behaviour of downstream-migrating silver eels. The eels were tracked as they approached a hydropower plant with a state-of-the-art angled bar rack and full-depth bypass. Downstream and upstream swimming differed in preferred vertical and lateral positions. During periods of local downstream movement, the density of observations was largest in the upper middle section, away from the river boundaries and in higher velocities. Conversely, when moving upstream, eels tended to avoid the upper layers of the middle part of the river, swimming closer to the riverbed and using the bank areas to a greater extent. Downstream-moving fish swam higher in the water column during night and in turbid conditions (high discharge). When approaching the impassable bar rack and the full-depth bypass, the eels searched most intensely but not exclusively along the bottom third of the rack, often exploring at new depths after changing direction. The impediment passage efficiency was 100% when both bypass solutions were considered. The study provides knowledge of the swimming behaviour of silver eels, which is relevant for the design of bypass solutions for eels at migration barriers.


Assuntos
Anguilla , Animais , Migração Animal , Enguias , Natação , Rios , Telemetria
3.
Sci Rep ; 12(1): 13736, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962063

RESUMO

The precise homing of Atlantic salmon to their natal river and spawning grounds is the foundation for locally adapted genetically differentiated populations across rivers or across river sections. A sequential imprinting hypothesis states that salmon smolts may imprint on environmental clues along the outward migration route and then use this in reverse order to direct the spawning migration later in life. In this study, we provide empirical support for this hypothesis. PIT-tagged wild Atlantic salmon using a 2 km hydropower tunnel as downstream migrating smolts had a 18% (1SW) and 23% (2SW) lower probability of successfully migrating through the parallel river stretch as adult spawners compared to spawners that migrated through the same river stretch as smolts. These findings highlight how a fine-scale riverine migration route may be imprinted in wild Atlantic salmon smolts. From an applied perspective, these results stress the importance of not depriving smolts from parts of their migration route to ensure successful return of adults to their natal spawning grounds.


Assuntos
Migração Animal , Salmo salar , Adaptação Fisiológica , Animais , Probabilidade , Rios , Salmo salar/genética
4.
Sci Rep ; 11(1): 16444, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385548

RESUMO

Renewable energy projects such as hydropower facilities contribute towards meeting the world`s growing energy demands and urgent need for mitigating climate change. However, such infrastructure has the potential to substantially alter the environment which, in turn, can induce new challenges related to for instance fish migration conditions. As a consequence, local adaptations related to pre-development migration conditions may be affected for influenced populations. To explore selection regimes operating at a river hydropower plant, we monitored Atlantic salmon smolt individuals during their seaward migration. When passing the hydropower plant, the smolts chose between a surface fish passage or a submerged turbine intake. Smolts were scored for behavioural type (basal locomotor activity, net restrain (a measure of escape responses) and willingness to leave a familiar environment) prior to their migration choice, and we found that smolts with high basal activity had higher probability of using the fish passage than the turbine intake. In addition, migration route choice was a partly consistent trait in that fish that had previously passed a hydroelectric facility by using a fish passage rather than the turbine intake were significantly more likely to use it again when faced with the same choice. Higher mortality among turbine migrants could potentially reduce or eliminate particular behaviour types within populations- and the corresponding population genetic diversity that is essential to cope with future environmental challenges.


Assuntos
Comportamento Animal , Centrais Elétricas , Salmo salar/fisiologia , Migração Animal , Animais , Noruega
5.
Ecol Evol ; 11(9): 3917-3932, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33976784

RESUMO

Genetic methods for the estimation of population size can be powerful alternatives to conventional methods. Close-kin mark-recapture (CKMR) is based on the principles of conventional mark-recapture, but instead of being physically marked, individuals are marked through their close kin. The aim of this study was to evaluate the potential of CKMR for the estimation of spawner abundance in Atlantic salmon and how age, sex, spatial, and temporal sampling bias may affect CKMR estimates. Spawner abundance in a wild population was estimated from genetic samples of adults returning in 2018 and of their potential offspring collected in 2019. Adult samples were obtained in two ways. First, adults were sampled and released alive in the breeding habitat during spawning surveys. Second, genetic samples were collected from out-migrating smolts PIT-tagged in 2017 and registered when returning as adults in 2018. CKMR estimates based on adult samples collected during spawning surveys were somewhat higher than conventional counts. Uncertainty was small (CV < 0.15), due to the detection of a high number of parent-offspring pairs. Sampling of adults was age- and size-biased and correction for those biases resulted in moderate changes in the CKMR estimate. Juvenile dispersal was limited, but spatially balanced sampling of adults rendered CKMR estimates robust to spatially biased sampling of juveniles. CKMR estimates based on returning PIT-tagged adults were approximately twice as high as estimates based on samples collected during spawning surveys. We suggest that estimates based on PIT-tagged fish reflect the total abundance of adults entering the river, while estimates based on samples collected during spawning surveys reflect the abundance of adults present in the breeding habitat at the time of spawning. Our study showed that CKMR can be used to estimate spawner abundance in Atlantic salmon, with a moderate sampling effort, but a carefully designed sampling regime is required.

6.
Sci Total Environ ; 705: 135773, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31972933

RESUMO

Anthropogenic structures in rivers are major threats for fish migration and effective mitigation is imperative given the worldwide expansion of such structures. Fish behaviour is strongly influenced by hydrodynamics, but little is known on the relation between hydraulics and fish fine scale-movement. We combined 3D Computational fluid dynamics modelling (CFD) with 2D and 3D fish positioning to investigate the relation between hydrodynamics and the downstream movement of Atlantic salmon smolts (Salmo salar). We show that fish use fine-scale flow velocity and turbulence as navigation cues of fine-scale movement behaviour. Tri-dimensional swimming speed and swimming direction can be explained by adjustments of fish to flow motion, which are linked to fish swimming mode. Fish diverge from the flow by swimming at speeds within or higher than their prolonged speeds (0.38-0.73 m s-1). Flow direction plays a pivotal role on fish swimming performance, with high upstream and downwards velocities impacting swimming the most. Turbulence is also influential, by benefiting swimming performance at low TKE (< 0.03 m2 s-2) or constraining it at higher levels. We show that fish behaviour is affected by interactions of several hydraulic variables that should be considered jointly.


Assuntos
Salmo salar , Migração Animal , Animais , Hidrodinâmica , Rios , Natação
7.
J Anim Ecol ; 80(3): 539-47, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21198589

RESUMO

1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change.


Assuntos
Mudança Climática , Comportamento Competitivo , Camada de Gelo , Truta , Animais , Biomassa , Temperatura Baixa , Água Doce , Noruega , Crescimento Demográfico , Truta/fisiologia
8.
Proc Biol Sci ; 277(1684): 1113-20, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20007174

RESUMO

Current knowledge suggests that patterns of energy storage and depletion in animals are governed by behavioural trade-offs between risks associated with feeding and future energy demands. However, the length of adverse periods varies over geographical or climatic gradients. To explore the potential for genotypic sources of variation in behavioural trade-offs, we compared the winter energy-depletion patterns among 13 wild populations of juvenile Atlantic salmon (Salmo salar L.) along a latitudinal gradient (58-70 degrees N) and performed common-environment experiments of energy-state-dependent feeding. In the wild, winter lipid-depletion rates were lower for northern than for southern populations. The variation in spring lipid levels among the population was lower than autumn variation, with storage lipid levels clustered close to critical limits for survival. In semi-natural stream channels with natural food supply, hatchery-reared fish originating from northern populations showed a positive scaling of feeding activity with decreasing energy levels, whereas southern populations did not. In conclusion, juvenile Atlantic salmon from northern populations defend their energy levels more strongly than fish from southern populations. Adaptive variation in feeding activity appears important for this difference. Thus, the present study shows a link between geographical patterns in storage energy trajectories and adaptive differences in state-dependent feeding motivation.


Assuntos
Aclimatação/fisiologia , Metabolismo Energético , Comportamento Alimentar/fisiologia , Salmo salar/crescimento & desenvolvimento , Estações do Ano , Animais , Comportamento Animal/fisiologia , Geografia , Dinâmica Populacional , Salmo salar/fisiologia
9.
J Anim Ecol ; 78(1): 226-35, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18808436

RESUMO

1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.


Assuntos
Ecossistema , Salmo salar/fisiologia , Animais , Pesqueiros , Densidade Demográfica , Análise de Regressão
10.
Dis Aquat Organ ; 77(3): 191-8, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18062470

RESUMO

Extensive mortality in Atlantic salmon fry was reported in the River Aelva from 2002 to 2004. Dead fish were collected in late summer 2006, and live fish were sampled by electrofishing in September the same year. At autopsy and in histological sections, the fish kidneys were found to be pale and considerably enlarged. Proliferative lesions with characteristic PKX cells were seen in a majority of the fish. DNA from kidney samples of diseased fish was subjected to PCR and sequencing, and the amplified sequences matched those of Tetracapsuloides bryosalmonae. We concluded that this myxozoan transmitted from bryozoans was the main cause of the observed mortality in salmon fry in 2006. Results from quantitative electrofishing in 2005 and 2006, combined with the observed fry mortality from 2002 to 2004, show that the smolt production in the river is severely reduced and that T. bryosalmonae is the most likely explanation for this decline. The present study is the first to report a considerable negative population effect in wild Atlantic salmon due to proliferative kidney disease (PKD). It also represents the northernmost PKD outbreak in wild fish. The river is regulated for hydroelectric power purposes, causing reduced water flow and elevated summer temperatures, and the present PKD outbreak may serve as an example of increased disease vulnerability of northern fish populations in a warmer climate.


Assuntos
Eucariotos/patogenicidade , Doenças dos Peixes/mortalidade , Nefropatias/veterinária , Infecções Protozoárias em Animais/mortalidade , Salmo salar/parasitologia , Animais , Eucariotos/isolamento & purificação , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/parasitologia , Rim/patologia , Nefropatias/mortalidade , Nefropatias/parasitologia , Noruega , Reação em Cadeia da Polimerase/veterinária , Densidade Demográfica , Infecções Protozoárias em Animais/diagnóstico , Infecções Protozoárias em Animais/parasitologia , Rios , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...