Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 219(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442417

RESUMO

Type I interferons (IFN-I) play a critical role in human antiviral immunity, as demonstrated by the exceptionally rare deleterious variants of IFNAR1 or IFNAR2. We investigated five children from Greenland, Canada, and Alaska presenting with viral diseases, including life-threatening COVID-19 or influenza, in addition to meningoencephalitis and/or hemophagocytic lymphohistiocytosis following live-attenuated viral vaccination. The affected individuals bore the same homozygous IFNAR2 c.157T>C, p.Ser53Pro missense variant. Although absent from reference databases, p.Ser53Pro occurred with a minor allele frequency of 0.034 in their Inuit ancestry. The serine to proline substitution prevented cell surface expression of IFNAR2 protein, small amounts of which persisted intracellularly in an aberrantly glycosylated state. Cells exclusively expressing the p.Ser53Pro variant lacked responses to recombinant IFN-I and displayed heightened vulnerability to multiple viruses in vitro-a phenotype rescued by wild-type IFNAR2 complementation. This novel form of autosomal recessive IFNAR2 deficiency reinforces the essential role of IFN-I in viral immunity. Further studies are warranted to assess the need for population screening.


Assuntos
COVID-19 , Interferon Tipo I , Antivirais/metabolismo , Criança , Humanos , Padrões de Herança , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Receptor de Interferon alfa e beta
2.
Fam Cancer ; 20(1): 55-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32504210

RESUMO

Peutz-Jeghers syndrome (PJS) is a hereditary polyposis syndrome characterized by hamartomatous Peutz-Jeghers polyps in the gastrointestinal tract, mucocutaneous pigmentations, and increased risk for intestinal and extraintestinal cancer. In more than two-third of patients it is possible to detect pathogenic variants in the serine/threonine kinase 11 (STK11) gene, but so far is knowledge about genetic causes in the remaining part of patients limited. Reports of STK11 mosaicism are rare but may be an explanation in some patients without initial findings of pathogenic variants in STK11. We report two Danish patients with STK11 mosaicism detected in blood when using Next-Generation Sequencing. This is only the sixth and seventh patient reported in the literature, and we compare phenotypes of the reported cases. The results indicate that STK11 mosaicism is more frequent than anticipated and highlight that mosaicism should be considered in patients with clinical suspicion of PJS or patients fulfilling the diagnostic criteria.


Assuntos
Mosaicismo , Síndrome de Peutz-Jeghers/genética , Proteínas Serina-Treonina Quinases/genética , Quinases Proteína-Quinases Ativadas por AMP , Adulto , Dinamarca , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Fenótipo , Adulto Jovem
3.
Nat Genet ; 51(4): 716-727, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833796

RESUMO

Mesenchymal (stromal) stem cells (MSCs) constitute populations of mesodermal multipotent cells involved in tissue regeneration and homeostasis in many different organs. Here we performed comprehensive characterization of the transcriptional and epigenomic changes associated with osteoblast and adipocyte differentiation of human MSCs. We demonstrate that adipogenesis is driven by considerable remodeling of the chromatin landscape and de novo activation of enhancers, whereas osteogenesis involves activation of preestablished enhancers. Using machine learning algorithms for in silico modeling of transcriptional regulation, we identify a large and diverse transcriptional network of pro-osteogenic and antiadipogenic transcription factors. Intriguingly, binding motifs for these factors overlap with SNPs related to bone and fat formation in humans, and knockdown of single members of this network is sufficient to modulate differentiation in both directions, thus indicating that lineage determination is a delicate balance between the activities of many different transcription factors.


Assuntos
Adipogenia/genética , Osteogênese/genética , Fator de Células-Tronco/genética , Fatores de Transcrição/genética , Células A549 , Adipócitos/fisiologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Humanos , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/fisiologia , Polimorfismo de Nucleotídeo Único/genética
4.
Nat Genet ; 51(4): 766, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911162

RESUMO

In the version of this article initially published, in the graph keys in Fig. 1i, the colors indicating 'Ob' and 'Ad' were red and blue, respectively, but should have been blue and red, respectively; the shapes indicating 'MUS' and 'BM' were a triangle and a square, respectively, but should have been a square and a triangle, respectively. The errors have been corrected in the HTML and PDF versions of the article.

5.
Cell Metab ; 28(1): 159-174.e11, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29861389

RESUMO

Activation of energy expenditure in thermogenic fat is a promising strategy to improve metabolic health, yet the dynamic processes that evoke this response are poorly understood. Here we show that synthesis of the mitochondrial phospholipid cardiolipin is indispensable for stimulating and sustaining thermogenic fat function. Cardiolipin biosynthesis is robustly induced in brown and beige adipose upon cold exposure. Mimicking this response through overexpression of cardiolipin synthase (Crls1) enhances energy consumption in mouse and human adipocytes. Crls1 deficiency in thermogenic adipocytes diminishes inducible mitochondrial uncoupling and elicits a nuclear transcriptional response through endoplasmic reticulum stress-mediated retrograde communication. Cardiolipin depletion in brown and beige fat abolishes adipose thermogenesis and glucose uptake, which renders animals insulin resistant. We further identify a rare human CRLS1 variant associated with insulin resistance and show that adipose CRLS1 levels positively correlate with insulin sensitivity. Thus, adipose cardiolipin has a powerful impact on organismal energy homeostasis through thermogenic fat bioenergetics.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Marrom/metabolismo , Cardiolipinas/biossíntese , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Animais , Células Cultivadas , Metabolismo Energético , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Termogênese , Transferases (Outros Grupos de Fosfato Substituídos)/genética
6.
Cell Metab ; 27(1): 264-264.e1, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320707

RESUMO

Adipose tissues are complex organs, with central roles in energy homeostasis as well as local functions. Adipocytes develop in diverse, discrete locations throughout the body. Important regional differences in adipocytes exist, and diseases that affect adipose tissues often demonstrate depot-specific effects. Herein, we depict the widespread locations of major and minor rodent adipose depots. Depot-specific molecular and functional characteristics will be described in Part II.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Animais , Humanos , Camundongos
7.
Cell Metab ; 27(1): 266-266.e1, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29320708

RESUMO

The intrinsic cellular and metabolic properties of an adipocyte are shaped by the specific niche in which it resides. The diverse and discrete locations of major and minor rodent adipose depots are depicted in Part I. In Part II, the molecular and functional characteristics of four major types of adipocytes are described. Identified functions of relatively understudied but undoubtedly important depots are also highlighted.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Animais , Humanos , Camundongos , Especificidade de Órgãos
8.
Trends Endocrinol Metab ; 28(2): 104-120, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27979331

RESUMO

Brown and brown-like adipocytes are specialized adipocytes with a high capacity to convert metabolic energy to heat. This function is not only eminent in supporting organismal thermogenesis, but may also have potential in the fight against obesity. The latter has spurred a massive interest in understanding the development and regulation of these thermogenic adipocytes. Here, we review how genome-wide studies based on next-generation sequencing have provided insight into how the chromatin and transcriptional landscapes are established in thermogenic adipocytes and how thermogenic signals can change the genomic programming of white adipocytes. Furthermore, we discuss how the integration of genomic data can be used to discover novel transcriptional pathways that may be modulated as part of therapeutic strategies for the treatment of obesity.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Termogênese/fisiologia , Adipogenia/genética , Tecido Adiposo Marrom/metabolismo , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Termogênese/genética
9.
Genes Dev ; 29(1): 7-22, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25504365

RESUMO

Long-term exposure to peroxisome proliferator-activated receptor γ (PPARγ) agonists such as rosiglitazone induces browning of rodent and human adipocytes; however, the transcriptional mechanisms governing this phenotypic switch in adipocytes are largely unknown. Here we show that rosiglitazone-induced browning of human adipocytes activates a comprehensive gene program that leads to increased mitochondrial oxidative capacity. Once induced, this gene program and oxidative capacity are maintained independently of rosiglitazone, suggesting that additional browning factors are activated. Browning triggers reprogramming of PPARγ binding, leading to the formation of PPARγ "superenhancers" that are selective for brown-in-white (brite) adipocytes. These are highly associated with key brite-selective genes. Based on such an association, we identified an evolutionarily conserved metabolic regulator, Kruppel-like factor 11 (KLF11), as a novel browning transcription factor in human adipocytes that is required for rosiglitazone-induced browning, including the increase in mitochondrial oxidative capacity. KLF11 is directly induced by PPARγ and appears to cooperate with PPARγ in a feed-forward manner to activate and maintain the brite-selective gene program.


Assuntos
Adipócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Proteínas Repressoras/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos Marrons/citologia , Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular/genética , Reprogramação Celular , Cromatina/metabolismo , Regulação da Expressão Gênica , Humanos , Hipoglicemiantes/farmacologia , Mitocôndrias/efeitos dos fármacos , Oxirredução , Ligação Proteica , Proteínas Repressoras/genética , Rosiglitazona , Tiazolidinedionas/farmacologia , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...