Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pediatr Pulmonol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041931

RESUMO

BACKGROUND: Biallelic ATP-binding cassette subfamily A member 3 (ABCA3) variants can cause interstitial lung disease in children and adults, for which no proven treatments exist. Recent in vitro evidence suggested that cyclosporine A (CsA) could correct some ABCA3 variants, however for other variants this is unknown and no data in patients exist. METHODS: We retrieved the clinical data of two children aged 2 and 4 years carrying homozygous ABCA3 variants (G210C and Q1045R, respectively) and empiric CsA treatment from the Kids Lung Register database. In vitro experiments functionally characterized the two variants and explored the effects of CsA alone or combined with hydroxychloroquine (HCQ) in a human alveolar epithelial cell line (A549) derived from adenocarcinoma cells. RESULTS: Six weeks following the introduction of CsA, both children required a reduced O2 flow supply, which then remained stable on CsA. Later, when CsA was discontinued, the clinical status of the children remained unchanged. Of note, the children simultaneously received prednisolone, azithromycin, and HCQ. In vitro, both ABCA3 variants demonstrated defective lysosomal colocalization and impaired ABCA3+ vesicle size, with proteolytic cleavage impairment only in Q1045R. CsA alone corrected the trafficking impairment and ABCA3+ vesicle size of both variants with a variant-specific effect on phosphatidylcholine recycling in G210C. CsA combined with HCQ were additive for improving trafficking of ABCA3 in G210C, but not in Q1045R. CONCLUSIONS: CsA treatment might be helpful for certain patients with ABCA3 deficiency, however, currently strong clinical supporting evidence is lacking. Appropriate trials are necessary to overcome this unmet need.

2.
Hum Mol Genet ; 27(6): 943-953, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29325094

RESUMO

Adenosine triphosphate (ATP)-binding cassette subfamily A member 3 (ABCA3), a phospholipid transporter in lung lamellar bodies (LBs), is essential for the assembly of pulmonary surfactant and LB biogenesis. Mutations in the ABCA3 gene are an important genetic cause for respiratory distress syndrome in neonates and interstitial lung disease in children and adults, for which there is currently no cure. The aim of this study was to prove that disease causing misfolding ABCA3 mutations can be corrected in vitro and to investigate available options for correction. We stably expressed hemagglutinin (HA)-tagged wild-type ABCA3 or variants p.Q215K, p.M760R, p.A1046E, p.K1388N or p.G1421R in A549 cells and assessed correction by quantitation of ABCA3 processing products, their intracellular localization, resembling LB morphological integrity and analysis of functional transport activity. We showed that all mutant proteins except for M760R ABCA3 were rescued by the bithiazole correctors C13 and C17. These variants were also corrected by the chemical chaperone trimethylamine N-oxide and by low temperature. The identification of lead molecules C13 and C17 is an important step toward pharmacotherapy of ABCA3 misfolding-induced lung disease.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genética , Metilaminas/farmacologia , Mutação de Sentido Incorreto/efeitos dos fármacos , Deficiências na Proteostase/tratamento farmacológico , Deficiências na Proteostase/genética , Células A549 , Transportadores de Cassetes de Ligação de ATP/metabolismo , Humanos , Doenças Pulmonares Intersticiais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Estudo de Prova de Conceito , Dobramento de Proteína , Deficiências na Proteostase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...