Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8(1): 2254, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269855

RESUMO

Ensembles of trapped atoms interacting with on-chip microwave resonators are considered as promising systems for the realization of quantum memories, novel quantum gates, and interfaces between the microwave and optical regime. Here, we demonstrate coupling of magnetically trapped ultracold Rb ground-state atoms to a coherently driven superconducting coplanar resonator on an integrated atom chip. When the cavity is driven off-resonance from the atomic transition, the microwave field strength in the cavity can be measured through observation of the AC shift of the atomic hyperfine transition frequency. When driving the cavity in resonance with the atoms, we observe Rabi oscillations between hyperfine states, demonstrating coherent control of the atomic states through the cavity field. These observations enable the preparation of coherent atomic superposition states, which are required for the implementation of an atomic quantum memory.

2.
Phys Rev Lett ; 114(11): 113003, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839266

RESUMO

We report on the magnetic trapping of an ultracold ensemble of (87)Rb atoms close to a superconducting ring prepared in different states of quantized magnetic flux. The niobium ring of 10 µm radius is prepared in a flux state n Φ(0), where Φ(0)=h/2e is the flux quantum and n varying between ±6. An atomic cloud of 250 nK temperature is positioned with a harmonic magnetic trapping potential at ∼18 µm distance below the ring. The inhomogeneous magnetic field of the supercurrent in the ring contributes to the magnetic trapping potential of the cloud. The induced deformation of the magnetic trap impacts the shape of the cloud, the number of trapped atoms, as well as the center-of-mass oscillation frequency of Bose-Einstein condensates. When the field applied during cooldown of the chip is varied, the change of these properties shows discrete steps that quantitatively match flux quantization.

3.
Phys Rev Lett ; 112(13): 133603, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24745416

RESUMO

We show how the vibrational modes of a nanowire may be coherently manipulated with a Bose-Einstein condensate of ultracold atoms. We consider the magnetomechanical coupling between paramagnetic atoms and a suspended nanowire carrying a dc current. Atomic spin flips produce a backaction onto the wire vibrations, which can lead to mechanical mode amplification. In contrast to systems considered before, the condensate has a finite energy bandwidth in the range of the chemical potential and we explore the consequences of this on the parametric drive. Applying the resolvent method, we determine the threshold coupling and we also find a significant frequency shift of the vibration due to magnetomechanical dressing.

4.
Nat Nanotechnol ; 7(8): 515-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22706699

RESUMO

Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction), between macroscopic objects (the Casimir interaction) and between an atom and a macroscopic object (the Casimir-Polder interaction). Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices, to influence adsorption rates onto nanostructures, and to influence the interactions between biomolecules in biological systems. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems and in exploring the interactions between carbon nanotubes and cold atoms. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces and nanoscale gratings and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose-Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information.


Assuntos
Fulerenos/química , Nanotubos de Carbono/química , Pontos Quânticos , Adsorção , Campos Eletromagnéticos , Nanoestruturas
5.
Nano Lett ; 12(1): 435-9, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22112048

RESUMO

We evaluate the coupling of a Bose-Einstein condensate (BEC) of ultracold, paramagnetic atoms to the magnetic field of the current in a mechanically vibrating carbon nanotube within the frame of a full quantum theory. We find that the interaction is strong enough to sense quantum features of the nanowire current noise spectrum by means of hyperfine-state-selective atom counting. Such a nondestructive measurement of the electric current via its magnetic field corresponds to the classical galvanometer scheme, extended to the quantum regime of charge transport. The calculated high sensitivity of the interaction in the nanowire-BEC hybrid systems opens up the possibility of quantum control, which may be further extended to include other relevant degrees of freedom.


Assuntos
Campos Magnéticos , Modelos Teóricos , Nanotubos de Carbono/química , Nanotubos de Carbono/efeitos da radiação , Teoria Quântica , Radiometria/métodos , Temperatura Baixa , Simulação por Computador , Doses de Radiação , Vibração
6.
Nat Nanotechnol ; 6(7): 446-51, 2011 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-21623359

RESUMO

Scanning probe microscopes are widely used to study surfaces with atomic resolution in many areas of nanoscience. Ultracold atomic gases trapped in electromagnetic potentials can be used to study electromagnetic interactions between the atoms and nearby surfaces in chip-based systems. Here we demonstrate a new type of scanning probe microscope that combines these two areas of research by using an ultracold gas as the tip in a scanning probe microscope. This cold-atom scanning probe microscope offers a large scanning volume, an ultrasoft tip of well-defined shape and high purity, and sensitivity to electromagnetic forces (including dispersion forces near nanostructured surfaces). We use the cold-atom scanning probe microscope to non-destructively measure the position and height of carbon nanotube structures and individual free-standing nanotubes. Cooling the atoms in the gas to form a Bose-Einstein condensate increases the resolution of the device.

7.
Phys Rev Lett ; 101(18): 183006, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18999830

RESUMO

We report on the realization and characterization of a magnetic microtrap for ultracold atoms near a straight superconducting Nb wire with circular cross section. The trapped atoms are used to probe the magnetic field outside the superconducting wire. The Meissner effect shortens the distance between the trap and the wire, reduces the radial magnetic-field gradients, and lowers the trap depth. Measurements of the trap position reveal a complete exclusion of the magnetic field from the superconducting wire for temperatures lower than 6 K. As the temperature is further increased, the magnetic field partially penetrates the superconducting wire; hence the microtrap position is shifted towards the position expected for a normal-conducting wire.

8.
Phys Rev Lett ; 98(14): 140403, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17501252

RESUMO

We report the phase coherent splitting of Bose-Einstein condensates by means of a phase grating produced near the surface of a microelectronic chip. A lattice potential with a period of 4 mum is generated by the superposition of static and oscillating magnetic fields. Precise control of the diffraction is achieved by controlling the currents in the integrated conductors. The interference of overlapping diffraction orders is observed after 8 ms of propagation in a harmonic trap and subsequent ballistic expansion of the atomic ensemble. By analyzing the interference pattern we show a reproducible phase relation between the diffraction orders with an uncertainty limited by the resolution of the diffraction grating.

9.
Phys Rev Lett ; 95(17): 170405, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16383802

RESUMO

We experimentally study the diffraction of a Bose-Einstein condensate from a magnetic lattice, realized by a set of 372 parallel gold conductors which are microfabricated on a silicon substrate. The conductors generate a periodic potential for the atoms with a lattice constant of 4 microm. After exposing the condensate to the lattice for several milliseconds we observe diffraction up to fifth order by standard time of flight imaging techniques. The experimental data can be quantitatively interpreted with a simple phase imprinting model. The demonstrated diffraction grating offers promising perspectives for the construction of an integrated atom interferometer.

10.
Phys Rev Lett ; 91(4): 040402, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12906647

RESUMO

We have studied the internal and external dynamics of a Bose-Einstein condensate in an anharmonic magnetic waveguide. An oscillating condensate experiences a strong coupling between the center of mass motion and the internal collective modes. Because of the anharmonicity of the magnetic potential, not only the center of mass motion shows harmonic frequency generation, but also the internal dynamics exhibit nonlinear frequency mixing. Thereby, the condensate shows shape oscillations with an extremely large change in the aspect ratio of up to a factor of 10. We describe the data with a theoretical model to high accuracy. For strong excitations we test the experimental data for indications of a chaotic behavior.

11.
Phys Rev Lett ; 87(23): 230401, 2001 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-11736434

RESUMO

Bose-Einstein condensation has been achieved in a magnetic surface microtrap with 4 x 10(5) (87)Rb atoms. The strongly anisotropic trapping potential is generated by a microstructure which consists of microfabricated linear copper conductor of widths ranging from 3 to 30 microm. After loading a high number of atoms from a pulsed thermal source directly into a magneto-optical trap the magnetically stored atoms are transferred into the microtrap by adiabatic transformation of the trapping potential. In the microtrap the atoms are cooled to condensation using forced rf-evaporation. The complete in vacuo trap design is compatible with ultrahigh vacuum below 2 x 10(-11) mbar.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...