Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 67(10): 1852-1858, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31216083

RESUMO

Astrocytes are organized as communicating cellular networks where each cell is connected to others via gap junctions. These connections are not pervasive and there is evidence for the existence of subgroups composed by preferentially connected cells. Despite being unclear how these are established, we hypothesized lineage might contribute to the establishment of these subgroups. To characterize the functional coupling of clonally related astrocytes, we performed intracellular dye injections in clones of astrocytes labeled with the StarTrack method. This methodology revealed sibling astrocytes are preferentially connected when compared to other surrounding astrocytes. These results suggest the role of the developmental origin in the organization of astrocytes as intercellular networks.


Assuntos
Astrócitos/fisiologia , Linhagem da Célula , Junções Comunicantes/fisiologia , Animais , Astrócitos/citologia , Linhagem da Célula/fisiologia , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Técnicas de Cultura de Tecidos
2.
Front Neurosci ; 9: 336, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500474

RESUMO

Chemosignals mediate both intra- and inter-specific communication in most mammals. Pheromones elicit stereotyped reactions in conspecifics, whereas kairomones provoke a reaction in an allospecific animal. For instance, predator kairomones elicit anticipated defensive responses in preys. The aim of this work was to test the behavioral responses of female mice to two chemosignals: 2-heptanone (2-HP), a putative alarm pheromone, and 2,4,5-trimethylthiazoline (TMT), a fox-derived putative kairomone, widely used to investigate fear and anxiety in rodents. The banana-like odorant isoamyl acetate (IA), unlikely to act as a chemosignal, served as a control odorant. We first presented increasing amounts of these odorants in consecutive days, in a test box in which mice could explore or avoid them. Female mice avoided the highest amounts of all three compounds, with TMT and IA eliciting avoidance at lower amounts (3.8 pmol and 0.35 µmol, respectively) than 2-HP (35 µmol). All three compounds induced minimal effects in global locomotion and immobility in this set up. Further, mice detected 3.5 pmol of TMT and IA in a habituation-dishabituation test, so avoidance of IA started well beyond the detection threshold. Finally, both TMT and IA, but not 2-HP, induced conditioned place avoidance and increased immobility in the neutral compartment during a contextual memory test. These data suggest that intense odors can induce contextual learning irrespective of their putative biological significance. Our results support that synthetic predator-related compounds (like TMT) or other intense odorants are useful to investigate the neurobiological basis of emotional behaviors in rodents. Since intense odorants unlikely to act as chemosignals can elicit similar behavioral reactions than chemosignals, we stress the importance of using behavioral measures in combination with other physiological (e.g., hormonal levels) or neural measures (e.g., immediate early gene expression) to establish the ethological significance of odorants.

3.
Brain Struct Funct ; 219(3): 1055-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-23625152

RESUMO

Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.


Assuntos
Arginina Vasopressina/metabolismo , Comportamento Animal/fisiologia , Neurônios/metabolismo , Caracteres Sexuais , Telencéfalo/metabolismo , Tálamo/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Feminino , Masculino , Camundongos
4.
Anat Rec (Hoboken) ; 296(9): 1346-63, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23904448

RESUMO

Some chemicals elicit innate emotionally laden behavioral responses. Pheromones mediate sexual attraction, parental care or agonistic confrontation, whereas predators' kairomones elicit defensive behaviors in their preys. This essay explores the hypothesis that the detection of these semiochemicals relies on highly specific olfactory and/or vomeronasal receptors. The V1R, V2R, and formyl-peptide vomeronasal receptors bind their ligands in highly specific and sensitive way, thus being good candidates for pheromone- or kairomone-detectors (e.g., secreted and excreted proteins, peptides and lipophilic volatiles). The olfactory epithelium also expresses specific receptors, for example trace amine-associated receptors (TAAR) and guanylyl cyclase receptors (GC-D and other types), some of which bind kairomones and putative pheromones. However, most of the olfactory neurons express canonical olfactory receptors (ORs) that bind many ligands with different affinity, being not suitable for mediating responses to pheromones and kairomones. In this respect, trimethylthiazoline (TMT) is considered a fox-derived kairomone for mice and rats, but it seems to be detected by canonical ORs. Therefore, we have reassessed the kairomonal nature of TMT by analyzing the behavioral responses of outbred (CD1) and inbred mice (C57BL/J6) to TMT. Our results confirm that both mouse strains avoid TMT, which increases immobility in C57BL/J6, but not CD1 mice. However, mice of both strains sniff at TMT throughout the test and show no trace of TMT-induced contextual conditioning (immobility or avoidance). This suggests that TMT is not a kairomone but, similar to a loud noise, in high concentrations it induces aversion and stress as unspecific responses to a strong olfactory stimulation.


Assuntos
Comportamento Animal , Emoções , Odorantes , Percepção Olfatória , Neurônios Receptores Olfatórios/metabolismo , Feromônios/metabolismo , Receptores Odorantes/metabolismo , Olfato , Tiazóis/metabolismo , Animais , Aprendizagem da Esquiva , Medo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Transdução de Sinais , Órgão Vomeronasal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...