Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(1): 016803, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615493

RESUMO

(57)Fe nuclear forward scattering on the chiral magnet FeGe reveals an extremely large precursor phase region above the helimagnetic ordering temperature T(C)(p) and beyond the pressure-induced quantum phase transition at 19 GPa. The decrease of the magnetic hyperfine field ⟨B(hf)⟩ with pressure is accompanied by a large increase of the width of the distribution of ⟨B(hf)⟩, indicating a strong quasistatic inhomogeneity of the magnetic states in the precursor region. Hyperfine fields of the order of 4 T (equivalent to a magnetic moment µ(Fe)≈0.4µ(B)) persist up to 28.5 GPa. No signatures of magnetic order have been found at about 31 GPa. The results, supported by ab initio calculations, suggest that chiral magnetic precursor phenomena, such as an inhomogeneous chiral-spin state, are vastly enlarged due to increasing spin fluctuations as FeGe is tuned to its quantum phase transition.

2.
Phys Rev Lett ; 105(15): 157001, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230928

RESUMO

We discovered that under pressure SnO with α-PbO structure, the same structure as in many Fe-based superconductors, e.g., ß-FeSe, undergoes a transition to a superconducting state for p≳6 GPa with a maximum Tc of 1.4 K at p=9.3 GPa. The pressure dependence of Tc reveals a domelike shape and superconductivity disappears for p≳16 GPa. It is further shown from band structure calculations that SnO under pressure exhibits a Fermi surface topology similar to that reported for some Fe-based superconductors and that the nesting between the hole and electron pockets correlates with the change of Tc as a function of pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA