Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2677-2680, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748134

RESUMO

A monolithic fiber laser emitting 1.7 W at 3920 nm is experimentally demonstrated in a Ho3+:InF3 fiber. The cavity comprises a pair of highly reflective fiber Bragg gratings written in the active fiber with the femtosecond phase-mask scanning technique and is spliced to the pump diode with a robust silica-to-fluoride fiber splice. This work is an important step toward high-power all-fiber laser operating in the vicinity of 4 µm.

2.
Opt Express ; 30(6): 8615-8640, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299310

RESUMO

Mid-infrared fiber sources, emitting between 2.5 µm and 5.0 µm, are interesting for their great potential in several application fields such as material processing, biomedicine, remote sensing and infrared countermeasures due to their high-power, their diffraction-limited beam quality as well as their robust monolithic architecture. In this review, we will focus on the recent progress in continuous wave and pulsed mid-infrared fiber lasers and the components that bring these laser sources closer to a field deployment as well as in industrial systems. Accordingly, we will briefly illustrate the potential of such mid-infrared fiber lasers through a few selected applications.

3.
Opt Express ; 30(3): 3367-3378, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209596

RESUMO

We report on a mid-infrared Q-switched erbium-doped all-fiber laser using a dysprosium-doped silica fiber as saturable absorber for the first time in this wavelength range. Moreover, we demonstrate the use of a highly reflective chirped fiber Bragg grating written in a silica fiber as the input coupler for such lasers. This Q-switched all-fiber laser generates a stable pulse train centered at 2798 nm with a maximum average power of 670 mW at a repetition rate of 140 kHz with a pulse duration of 240 ns and a pulse energy of 4.9 µJ.

4.
Opt Lett ; 47(2): 289-292, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030589

RESUMO

We report a dual-wavelength-pumped all-fiber continuous-wave (CW) laser operating at 3.55 µm that reached an output power of 14.9 W, which is, to the best of our knowledge, a record. The laser cavity, made of an erbium-doped fluoride fiber and bounded by two fiber Bragg gratings (FBGs), operates at an overall optical efficiency of 17.2% and a slope efficiency of 51.3% with respect to the 1976 nm launched pump power. The all-fiber design of the cavity not only allows for significant power scaling of the laser output, but also improves its long-term stability at high output power. The cavity design was set according to a numerical optimization that showed very good agreement with the experimental results.

5.
Opt Lett ; 46(19): 4964-4967, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598244

RESUMO

Laser sources operating in the 2 µm spectral region play an important role for sensing and spectroscopy, and potentially for optical communication systems. In this work, we demonstrate a widely tunable hybrid silicon-fiber laser operating in the 2 µm band. By introducing a silicon-integrated Vernier filter in a fiber laser, we achieved continuous wavelength tuning over a range of 100 nm, from 1970 to 2070 nm. Fiber-coupled output power up to 28 mW was measured with a full-width-half-maximum linewidth smaller than 260 kHz and a side-mode-suppression ratio greater than 40 dB over the spectral range.

6.
J Hydrol Eng ; 26(9)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34497453

RESUMO

Hydrologic model intercomparison studies help to evaluate the agility of models to simulate variables such as streamflow, evaporation, and soil moisture. This study is the third in a sequence of the Great Lakes Runoff Intercomparison Projects. The densely populated Lake Erie watershed studied here is an important international lake that has experienced recent flooding and shoreline erosion alongside excessive nutrient loads that have contributed to lake eutrophication. Understanding the sources and pathways of flows is critical to solve the complex issues facing this watershed. Seventeen hydrologic and land-surface models of different complexity are set up over this domain using the same meteorological forcings, and their simulated streamflows at 46 calibration and seven independent validation stations are compared. Results show that: (1) the good performance of Machine Learning models during calibration decreases significantly in validation due to the limited amount of training data; (2) models calibrated at individual stations perform equally well in validation; and (3) most distributed models calibrated over the entire domain have problems in simulating urban areas but outperform the other models in validation.

7.
Opt Lett ; 46(18): 4506-4509, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34525033

RESUMO

We report a 2800 nm Er3+-doped fluoride fiber amplifier that delivers 1 mJ pulses with an average power of 5 W and pulse duration of 1 ns at 5 kHz repetition rate. To the best of our knowledge, this is the highest pulse energy achieved from a fluoride-fiber-based system operating near 3 µm, and the W-level average power and short pulse lengths make the system a promising tool for biomaterials processing.

8.
Opt Lett ; 46(10): 2392-2395, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988591

RESUMO

We report, to the best of our knowledge, the first monolithic visible fiber laser pumped by a pigtailed diode. The robust cavity design proposed is based on a highly reflective fiber Bragg grating spliced to a double-clad praseodymium-doped fiber. The laser signal generated at 635.5 nm is single-mode, has a FWHM bandwidth of 0.16 nm, and reaches a maximum cw output power of 2.3 W. This demonstration breaks ground for the development of reliable high-power visible fiber lasers.

9.
Opt Lett ; 45(20): 5828-5831, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33057295

RESUMO

We report a novel technique for side-pumping fluoride-based double-clad fibers, allowing a record coupling efficiency of 93% and a maximum power handling near 100 W at 981 nm. Our simple technique is based on wrapping a silica taper around a fluoride fiber and, therefore, does not require any complex fusion between these two dissimilar fibers. Under passive cooling, pump combiners made of undoped and erbium-doped fluoride fibers were successfully operated during several hours at respective incident powers of 91 and 44 W. Heat management issues and active cooling strategies are also discussed. This innovative combiner is a keystone towards the development of compact and robust high-power mid-infrared fiber lasers and amplifiers.

10.
Opt Express ; 28(18): 26067-26075, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32906883

RESUMO

We present a high resolution temperature sensor using the beat frequency between the longitudinal modes of twin single-mode distributed feedback fiber lasers. The lasers are made by femtosecond inscription of π-shifted fiber Bragg gratings in a thulium-doped fiber. Combining the light from two single frequency fiber lasers on a photodetector produces a rf beat frequency signal which is dependent on temperature. Experimental results show a sensitivity of 1900 MHz/°C, leading to a precision of 0.0007 °C.

11.
Opt Lett ; 45(18): 5028-5031, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32932443

RESUMO

In this Letter, we report, to the best of our knowledge, the first demonstration of an in-band pumped gain-switched Dy3+-doped fiber laser operating at 3.24 µm. The monolithic cavity bounded by two fiber Bragg gratings was pumped by a gain-switched Er3+-doped fiber system. It produced stable nanosecond pulses in a single-pulse regime on its entire operating range from 20 kHz to 120 kHz. A record average power of 1.43 W was achieved for a repetition rate of 120 kHz, and a record pulse energy of 19.2 µJ was achieved at 60 kHz. These results represent a significant improvement in Dy3+-doped pulsed fiber laser performances and open the way to applications in the fields of remote sensing and material processing.

12.
Light Sci Appl ; 9: 64, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351688

RESUMO

Multiphoton absorption via ultrafast laser focusing is the only technology that allows a three-dimensional structural modification of transparent materials. However, the magnitude of the refractive index change is rather limited, preventing the technology from being a tool of choice for the manufacture of compact photonic integrated circuits. We propose to address this issue by employing a femtosecond-laser-induced electronic band-gap shift (FLIBGS), which has an exponential impact on the refractive index change for propagating wavelengths approaching the material electronic resonance, as predicted by the Kramers-Kronig relations. Supported by theoretical calculations, based on a modified Sellmeier equation, the Tauc law, and waveguide bend loss calculations, we experimentally show that several applications could take advantage of this phenomenon. First, we demonstrate waveguide bends down to a submillimeter radius, which is of great interest for higher-density integration of fs-laser-written quantum and photonic circuits. We also demonstrate that the refractive index contrast can be switched from negative to positive, allowing direct waveguide inscription in crystals. Finally, the effect of the FLIBGS can compensate for the fs-laser-induced negative refractive index change, resulting in a zero refractive index change at specific wavelengths, paving the way for new invisibility applications.

13.
Opt Express ; 28(1): 107-115, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118937

RESUMO

We report the demonstration of a fiber-based supercontinuum source delivering up to 825 mW of average output power between 2.5 and 5.0 µm generated in all-normal dispersion regime. The pumping source consists of an amplified ultrafast Er3+:ZrF4 fiber laser providing high peak power femtosecond pulses at 3.6 µm with an average output power exceeding the watt-level. These pulses are spectrally broadened through self-phase modulation using commercial chalcogenide-based step-index fibers. Al2O3 anti-reflection coatings were sputtered on chalcogenide fiber tips to increase the launching efficiency from 54% to 82%, making this record output power possible, and thus confirming that such coatings can support watt-level pumping with intense femtosecond pulses. To the best of our knowledge, this result represents the highest average output power ever achieved from a As2Se3-based mid-IR supercontinuum source with the potential of a high degree of coherence.

14.
Opt Express ; 27(21): 31013-31022, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684342

RESUMO

A detailed study of photo-inscribed optical waveguides in PMMA and polycarbonate using a mid-IR laser is presented. The wavelength of the laser is tuned near the absorption peaks of stretching C-H molecular bonds and the focused beam is scanned onto the surface of planar polymer samples. For the first time, we report the formation of optical waveguides in both polymers through resonant absorption of the laser beam. The optical properties of the waveguides were thoroughly assessed. An elliptic Gaussian mode is guided at the surface of both polymers. Insertion losses of 3.1 dB for a 30 mm long on-surface waveguide inscribed in PMMA were recorded. Such waveguides can interact with the external medium through evanescent coupling. As a proof of concept, the surface waveguides are used as highly sensitive refractometric sensors. An attenuation dynamical range of 35 dB was obtained for a liquid that matches the index of the PMMA substrate. Our results pave the way for large scale manufacturing of low cost biocompatible photonic devices.

15.
Opt Express ; 27(15): 20659-20669, 2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31510155

RESUMO

Fiber tip photodegradation through OH diffusion currently limits the long term operation of high-power fiber lasers and amplifiers operating near 3 µm. To address this issue, we investigate the resistance to OH diffusion of fluoride and oxide endcaps manufactured out of ZrF$_4$4, AlF$_3$3, GeO$_2$2, SiO$_2$2 and Al$_2$2O$_3$3 fibers. To this extent, the endcaps are spliced at the output of a 20 W continuous-wave fiber laser operating at 2.8 µm and their degradation over a 100 h time period is monitored. While the fluoride-based endcaps underwent failure during the first 10 h, their oxide counterparts survived the experiment, although showcasing degradation which was reflected as an increase of the endface temperature over time. To overcome this issue, we propose a novel method to completely suppress OH diffusion which consists in sputtering a nanoscopic diffusion barrier film made of silicon nitride (Si$_3$3N$_4$4) on the output face of the endcap. The effectiveness of the approach is validated on Al$_2$2O$_3$3, ZrF$_4$4 and AlF$_3$3 endcaps which show no sign of degradation after being used for more than a 100 h at the output of a 3 µm high-power fiber laser.

16.
Opt Express ; 27(3): 2170-2183, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732258

RESUMO

In this paper, we investigate laser emission at 3.4µm in heavily-erbium-doped fluoride fibers using dual-wavelength pumping. To this extent, a monolithic 7 mol% erbium-doped fluoride fiber laser bounded by intracore fiber Bragg gratings at 3.42 µm is used to demonstrate a record efficiency of 38.6 % with respect to the 1976 nm pump. Through numerical modeling, we show that similar laser performances at 3.4 µm can be expected in fluoride fibers with erbium concentrations ranging between 1 - 7 mol%, although power scaling should rely on lightly-doped fibers to mitigate the heat load. Moreover, this work studies transverse mode-beating of the 1976 nm core pump and its role in the generation of a periodic luminescent grating and in the trapping of excitation in the metastable energy levels of the erbium system. Finally, we also report on the bistability of the 3.42 µm output power of the 7 mol% erbium-doped fluoride fiber laser.

17.
Opt Lett ; 44(3): 491-494, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30702661

RESUMO

We report, to the best of our knowledge, the first entirely monolithic dysprosium (Dy)-doped fluoride fiber laser operating in the mid-IR region. The system delivers 10.1 W at 3.24 µm in continuous operation, a record for fiber oscillators in this range of wavelengths. The Dy3+ fiber is pumped in-band using an erbium-doped fiber laser at 2.83 µm made in-house and connected through a fusion splice. Two fiber Bragg gratings directly written in the Dy-doped fiber form the 3.24 µm laser cavity to provide a spectrally controlled laser output. This substantial increase of output power in the 3.0-3.3 µm spectral range could open new possibilities for applications in spectroscopy and advanced manufacturing.

18.
Opt Lett ; 44(2): 395-398, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644909

RESUMO

We report a passively mode-locked Dy3+:fluoride fiber laser emitting around 3.1 µm based on the nonlinear polarization evolution technique in a ring configuration, using in-band pumping at 2.8 µm. Transform-limited and self-starting mode-locked pulses as short as 828 fs with a center wavelength around 3.1 µm and repetition rates up to 60 MHz are obtained. In the single-pulse regime, a maximum average output power of 204 mW is measured, corresponding to a peak power of 4.2 kW and a pulse energy of 4.8 nJ. This first demonstration, to the best of our knowledge, of a femtosecond mode-locked fiber laser emitting directly beyond 3 µm paves the way for frequency comb synthesis in the molecular fingerprint region.

19.
Opt Lett ; 43(18): 4542-4545, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30211911

RESUMO

We report the demonstration of a 2824 nm passively cooled erbium-doped fluoride fiber laser delivering a record average output power of 41.6 W in continuous-wave operation. The splice-less cavity is based on intra-core fiber Bragg gratings written directly in the active erbium-doped fluoride fiber, which is bidirectionally pumped at 980 nm to reduce heat load. To the best of our knowledge, this result is the highest average output power achieved with a mid-infrared fiber laser. The long-term performance of different protective endcaps is also investigated at high-power operation.

20.
Opt Lett ; 43(13): 3196-3199, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957815

RESUMO

We report a simply designed gain-switched all-fiber laser emitting a maximum average output power of 11.2 W at 2.826 µm. The corresponding extracted pulse energy is 80 µJ at a pulse duration of 170 ns. These performances significantly surpass previous gain-switched demonstrations and are close to the state-of-the-art Q-switched laser performances near 2.8 µm, but with a much simpler and robust all-fiber design. The spliceless laser cavity is made of a heavily erbium-doped fluoride glass fiber and is bounded by fiber Bragg gratings written directly in the gain fiber through the protective polymer coating.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...