Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 53, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36978104

RESUMO

National Eye Institute recently issued a new Strategic Plan outlining priority research areas for the next 5 years. Starting cell source for deriving stem cell lines is as an area with gaps and opportunities for making progress in regenerative medicine, a key area of emphasis within the NEI Strategic Plan. There is a critical need to understand how starting cell source affects the cell therapy product and what specific manufacturing capabilities and quality control standards are required for autologous vs allogeneic stem cell sources. With the goal of addressing some of these questions, in discussion with the community-at-large, NEI hosted a Town Hall at the Association for Research in Vision and Ophthalmology annual meeting in May 2022. This session leveraged recent clinical advances in autologous and allogeneic RPE replacement strategies to develop guidance for upcoming cell therapies for photoreceptors, retinal ganglion cells, and other ocular cell types. Our focus on stem cell-based therapies for RPE underscores the relatively advanced stage of RPE cell therapies to patients with several ongoing clinical trials. Thus, this workshop encouraged lessons learned from the RPE field to help accelerate progress in developing stem cell-based therapies in other ocular tissues. This report provides a synthesis of the key points discussed at the Town Hall and highlights needs and opportunities in ocular regenerative medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Doenças Retinianas , Humanos , Doenças Retinianas/terapia , Doenças Retinianas/metabolismo , Transplante de Células-Tronco , Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes Induzidas/metabolismo , Epitélio Pigmentado da Retina/metabolismo
2.
Front Behav Neurosci ; 13: 168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417375

RESUMO

Women are more susceptible to developing cocaine dependence than men, but paradoxically, are more responsive to treatment. The potent estrogen, 17ß-estradiol (E2), mediates these effects by augmenting cocaine seeking but also promoting extinction of cocaine seeking through E2's memory-enhancing functions. Although we have previously shown that E2 facilitates extinction, the neuroanatomical locus of action and underlying mechanisms are unknown. Here we demonstrate that E2 infused directly into the infralimbic-medial prefrontal cortex (IL-mPFC), a region critical for extinction consolidation, enhances extinction of cocaine seeking in ovariectomized (OVX) female rats. Using patch-clamp electrophysiology, we show that E2 may facilitate extinction by potentiating intrinsic excitability of IL-mPFC neurons. Because the mnemonic effects of E2 are known to be regulated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), we examined whether BDNF/TrkB signaling was necessary for E2-induced enhancement of excitability and extinction. We found that E2-mediated increases in excitability of IL-mPFC neurons were abolished by Trk receptor blockade. Moreover, blockade of TrkB signaling impaired E2-facilitated extinction of cocaine seeking in OVX female rats. Thus, E2 enhances IL-mPFC neuronal excitability in a TrkB-dependent manner to support extinction of cocaine seeking. Our findings suggest that pharmacological enhancement of E2 or BDNF/TrkB signaling during extinction-based therapies would improve therapeutic outcome in cocaine-addicted women.

3.
Horm Behav ; 114: 104545, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31228421

RESUMO

The memory-enhancing effects of 17ß-estradiol (E2) depend upon rapid activation of several cell-signaling cascades within the dorsal hippocampus (DH). Among the many cell-signaling pathways that mediate memory processes, Wnt/ß-catenin signaling has emerged as a potential key player because of its importance to hippocampal development and synaptic plasticity. However, whether E2 interacts with Wnt/ß-catenin signaling to promote memory consolidation is unknown. Therefore, the present study examined whether Wnt/ß-catenin signaling within the DH is necessary for E2-induced memory consolidation in ovariectomized mice tested in the object recognition and object placement tasks. Ovariectomized C57BL/6 mice received immediate post-training infusions of E2 or vehicle into the dorsal third ventricle plus the endogenous Wnt/ß-catenin antagonist Dickkopf-1 (Dkk-1) or vehicle into the DH to assess whether the memory-enhancing effects of E2 depend on activation of Wnt/ß-catenin signaling. Our results suggest that Dkk-1 blocks E2-induced memory enhancement as hypothesized, but may do so by only moderately blunting Wnt/ß-catenin signaling while concurrently activating Wnt/JNK signaling. The current study provides novel insights into the mechanisms through which E2 enhances memory consolidation in the DH, as well as critical information about the mechanistic actions of Dkk-1.


Assuntos
Estradiol/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Consolidação da Memória/efeitos dos fármacos , Animais , Feminino , Hipocampo/efeitos dos fármacos , Infusões Intraventriculares , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Ovariectomia , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Behav Brain Res ; 368: 111913, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-30998994

RESUMO

Psychiatric disorders affect nearly 50% of individuals who have experienced a traumatic brain injury (TBI). Anhedonia is a major symptom of numerous psychiatric disorders and is a diagnostic criterion for depression. It has recently been appreciated that reinforcement may be separated into consummatory (hedonic), motivational and decisional components, all of which may be affected differently in disease. Although anhedonia is typically assessed using positive reinforcement, the importance of stress in psychopathology suggests the study of negative reinforcement (removal or avoidance of aversive events) may be equally important. The present study investigated positive and negative reinforcement following a rat model of mild TBI (mTBI) using lateral fluid percussion. Hedonic value and motivation for reinforcement was determined by behavioral economic analyses. Following mTBI, the hedonic value of avoiding foot shock was reduced. In contrast, the hedonic value of escaping foot shock or obtaining a sucrose pellet was not altered by mTBI. Moreover, motivation to avoid or escape foot shock or to acquire sucrose was not altered by mTBI. Our results suggest that individuals experiencing mTBI find avoidance of aversive events less reinforcing, and therefore are less apt to utilize proactive control of stress.


Assuntos
Anedonia/fisiologia , Concussão Encefálica/metabolismo , Reforço Psicológico , Animais , Concussão Encefálica/fisiopatologia , Depressão/etiologia , Depressão/metabolismo , Depressão/psicologia , Economia Comportamental , Masculino , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley
5.
Exp Neurol ; 315: 42-51, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710530

RESUMO

An estimated 2.8 million traumatic brain injuries (TBI) occur within the United States each year. Approximately 40% of new TBI cases are female, however few studies have investigated the effects of TBI on female subjects. In addition to typical neurobehavioral sequelae observed after TBI, such as poor cognition, impaired behavior, and somatic symptoms, women with TBI report amenorrhea or irregular menstrual cycles suggestive of disruptions in the hypothalamic-pituitary-gonadal (HPG) axis. HPG dysfunction following TBI has been linked to poor functional outcome in men and women, but the mechanisms by which this may occur or relate to behavior has not been fully developed or ascertained. The present study determined if TBI resulted in HPG axis perturbations in young adult female Sprague Dawley rats, and whether TBI was associated with cognitive and sensorimotor deficits. Following lateral fluid percussion injury, injured females spent significantly more time in diestrus compared to sham females, consistent with a persistent low sex-steroid hormone state. Injured females displayed significantly reduced 17ß-estradiol (E2) and luteinizing hormone levels. Concomitantly, injured females were impaired in spatial working memory compared to shams. Impaired GSK3ß/ß-catenin signaling related to synaptic changes was evident one-week post-injury in the hippocampus among injured females compared to sham females, and this impairment paralleled the deficits in spatial working memory. Sensorimotor function, as evidenced by suppression of the acoustic startle response, was chronically impaired even after normal estrous cycling resumed. These data demonstrate that TBI results in estrous cycle impairments, memory dysfunction, and perturbations in GSK3ß/ß-catenin signaling, suggesting a potential mechanism for HPG-mediated cognitive impairment following TBI.


Assuntos
Comportamento Animal , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Ciclo Estral , Glicogênio Sintase Quinase 3 beta/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/psicologia , Estradiol/sangue , Feminino , Sistema Hipotálamo-Hipofisário/fisiopatologia , Hormônio Luteinizante/sangue , Aprendizagem em Labirinto , Memória de Curto Prazo , Ratos , Ratos Sprague-Dawley , Reflexo de Sobressalto
6.
Neurobiol Learn Mem ; 156: 103-116, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30408525

RESUMO

The dorsal hippocampus (DH) and medial prefrontal cortex (mPFC) are brain regions essential for processing and storing episodic memory. In rodents, the DH has a well-established role in supporting the consolidation of episodic-like memory in tasks such as object recognition and object placement. However, the role of the mPFC in the consolidation of episodic-like memory tasks remains controversial. Therefore, the present study examined involvement of the DH and mPFC, alone and in combination, in object and spatial recognition memory consolidation in ovariectomized female mice. To this end, we utilized two types of inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to inactivate the DH alone, the mPFC alone, or both brain regions concurrently immediately after object training to assess the role of each region in the consolidation of object recognition and spatial memories. Our results using single and multiplexed DREADDS suggest that excitatory activity in the DH and mPFC, alone or in combination, is required for the successful consolidation of object recognition and spatial memories. Together, these studies provide critical insight into how the DH and mPFC work in concert to facilitate memory consolidation in female mice.


Assuntos
Técnicas Genéticas , Hipocampo/fisiologia , Consolidação da Memória/fisiologia , Memória Episódica , Córtex Pré-Frontal/fisiologia , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL
7.
Neuropharmacology ; 137: 372-381, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29750979

RESUMO

Anxiety disorders and posttraumatic stress disorder (PTSD) share a common feature of pathological avoidance behavior. The Wistar Kyoto (WKY) rat has been used as a model of anxiety vulnerability, expressing a behaviorally inhibited temperament, acquiring avoidance behavior more rapidly and displaying extinction-resistant avoidance compared to Sprague Dawley (SD) rats. Subanesthetic levels of ketamine have gained attention as a rapid antidepressant in treatment-resistant depression. While traditional antidepressants are commonly used to treat anxiety disorders and PTSD, the therapeutic utility of ketamine for these disorders is much less understood. The hippocampus is critical for the actions of antidepressants, is a structure implicated in anxiety disorders and PTSD, and is necessary for extinction of avoidance in SD rats. WKY rats have impaired hippocampal long-term potentiation (LTP), suggesting that persistent avoidance in WKY rats may be due to deficient hippocampal synaptic plasticity. In the present study, we hypothesized that ketamine would facilitate extinction of avoidance learning in WKY rats, and do so by enhancing hippocampal synaptic plasticity. As predicted, ketamine facilitated extinction of avoidance behavior in a subset of WKY rats (responders), with effects lasting at least three weeks. Additionally, LTP in these rats was enhanced by ketamine. Ketamine was not effective in facilitating avoidance extinction or in modifying LTP in WKY non-responders. The results suggest that subanesthetic levels of ketamine may be useful for treating anxiety disorders by reducing avoidance behaviors when combined with extinction conditions. Moreover, ketamine may have its long-lasting behavioral effects through enhancing hippocampal synaptic plasticity.


Assuntos
Ansiolíticos/farmacologia , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/fisiopatologia , Aprendizagem da Esquiva/efeitos dos fármacos , Ketamina/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Animais , Extinção Psicológica/efeitos dos fármacos , Predisposição Genética para Doença , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Resiliência Psicológica/efeitos dos fármacos , Especificidade da Espécie
8.
Artigo em Inglês | MEDLINE | ID: mdl-29175308

RESUMO

Differential processing of danger and safety signals may underlie symptoms of anxiety disorders and posttraumatic stress disorder. One symptom common to these disorders is pathological avoidance. The present study examined whether danger and safety signals influence avoidance differently in anxiety-vulnerable Wistar-Kyoto (WKY) rats and Sprague Dawley (SD) rats. SD and WKY rats were tested in a novel progressive ratio avoidance task with and without danger or safety signals. Two components of reinforcement, hedonic value and motivation, were determined by fitting an exponentiated demand equation to the data. Hedonic value of avoidance did not differ between SD and WKY rats, but WKY rats had greater motivation to avoid than SD rats. Removal of the safety signal reduced motivation to avoid in SD, but not WKY, rats. Removal of the danger signal did not alter avoidance in either strain. When danger and safety signals were presented simultaneously, WKY rats responded to the danger signals, whereas SD rats responded to the safety signal. The results provide evidence that 1) safety signals enhance motivation to avoid in SD rats, 2) both danger and safety signals influence motivation in WKY rats, and 3) danger signals take precedence over safety signals when presented simultaneously in WKY rats. Thus, anxiety vulnerability is associated with preferential use of danger signals to motivate avoidance. The differential use of danger and safety signals has important implications for the etiology and treatment of pathological avoidance in anxiety disorders and posttraumatic stress disorder.


Assuntos
Ansiedade , Aprendizagem da Esquiva , Comportamento Animal , Animais , Ansiedade/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Masculino , Motivação , Filosofia , Testes Psicológicos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Recompensa , Especificidade da Espécie
9.
Horm Behav ; 83: 60-67, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27178577

RESUMO

The potent estrogen 17ß-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in the dorsal hippocampus observed 30min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents.


Assuntos
Inibidores da Aromatase/farmacologia , Estradiol/biossíntese , Hipocampo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Nitrilas/farmacologia , Triazóis/farmacologia , Animais , Feminino , Hipocampo/metabolismo , Letrozol , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Ovariectomia , Reconhecimento Psicológico/efeitos dos fármacos
10.
Neuroscientist ; 22(3): 278-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25717070

RESUMO

Wnt signaling has emerged in recent years as a major player in both nervous system development and adult synaptic plasticity. Of particular relevance to researchers studying learning and memory, Wnt signaling is critical for normal functioning of the hippocampus, a brain region that is essential for many types of memory formation and whose dysfunction is implicated in numerous neurodegenerative and psychiatric conditions. Impaired hippocampal Wnt signaling is implicated in several of these conditions, however, little is known about how Wnt signaling mediates hippocampal memory formation. This review will provide a general overview of Wnt signaling and discuss evidence demonstrating a key role for Wnt signaling in hippocampal memory formation in both normal and disease states. The regulation of Wnt signaling by ovarian sex steroid hormones will also be highlighted, given that the neuroprotection afforded by Wnt-hormone interactions may have significant implications for cognitive function in aging, neurodegenerative disease, and ischemic injury.


Assuntos
Doença de Alzheimer/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Via de Sinalização Wnt , Animais , Estradiol/metabolismo , Humanos , Plasticidade Neuronal , Progesterona/metabolismo
11.
Learn Mem ; 22(9): 472-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26286657

RESUMO

Ample evidence has demonstrated that sex steroid hormones, such as the potent estrogen 17ß-estradiol (E2), affect hippocampal morphology, plasticity, and memory in male and female rodents. Yet relatively few investigators who work with male subjects consider the effects of these hormones on learning and memory. This review describes the effects of E2 on hippocampal spinogenesis, neurogenesis, physiology, and memory, with particular attention paid to the effects of E2 in male rodents. The estrogen receptors, cell-signaling pathways, and epigenetic processes necessary for E2 to enhance memory in female rodents are also discussed in detail. Finally, practical considerations for working with female rodents are described for those investigators thinking of adding females to their experimental designs.


Assuntos
Estradiol/metabolismo , Hipocampo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Animais , Feminino , Hipocampo/anatomia & histologia , Masculino , Roedores
12.
J Neurosci ; 35(4): 1343-53, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25632113

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer's disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s. Individuals with DS often exhibit working memory deficits coupled with degeneration of the locus coeruleus (LC) norepinephrine (NE) neurons. It is thought that LC degeneration precedes other AD-related neuronal loss, and LC noradrenergic integrity is important for executive function, working memory, and attention. Previous studies have shown that LC-enhancing drugs can slow the progression of AD pathology, including amyloid aggregation, oxidative stress, and inflammation. We have shown that LC degeneration in Ts65Dn mice leads to exaggerated memory loss and neuronal degeneration. We used a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the inert DREADD ligand clozapine-N-oxide. DREADD stimulation of LC-NE enhanced performance in a novel object recognition task and reduced hyperactivity in Ts65Dn mice, without significant behavioral effects in controls. To confirm that the noradrenergic transmitter system was responsible for the enhanced memory function, the NE prodrug l-threo-dihydroxyphenylserine was administered in Ts65Dn and normosomic littermate control mice, and produced similar behavioral results. Thus, NE stimulation may prevent memory loss in Ts65Dn mice, and may hold promise for treatment in individuals with DS and dementia.


Assuntos
Antipsicóticos/uso terapêutico , Clozapina/análogos & derivados , Síndrome de Down/complicações , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Receptor Muscarínico M3/metabolismo , Animais , Contagem de Células , Clozapina/uso terapêutico , Estudos Cross-Over , Drogas Desenhadas , Modelos Animais de Doenças , Síndrome de Down/genética , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Mutantes Neurológicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Doenças Neurodegenerativas/etiologia , Receptor Muscarínico M3/genética , Serina/uso terapêutico
13.
Behav Brain Res ; 285: 140-57, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25131507

RESUMO

The ovarian hormones 17ß-estradiol (E2) and progesterone (P4) are potent modulators of hippocampal memory formation. Both hormones have been demonstrated to enhance hippocampal memory by regulating the cellular and molecular mechanisms thought to underlie memory formation. Behavioral neuroendocrinologists have increasingly used the object recognition and object placement (object location) tasks to investigate the role of E2 and P4 in regulating hippocampal memory formation in rodents. These one-trial learning tasks are ideal for studying acute effects of hormone treatments on different phases of memory because they can be administered during acquisition (pre-training), consolidation (post-training), or retrieval (pre-testing). This review synthesizes the rodent literature testing the effects of E2 and P4 on object recognition (OR) and object placement (OP), and the molecular mechanisms in the hippocampus supporting memory formation in these tasks. Some general trends emerge from the data. Among gonadally intact females, object memory tends to be best when E2 and P4 levels are elevated during the estrous cycle, pregnancy, and in middle age. In ovariectomized females, E2 given before or immediately after testing generally enhances OR and OP in young and middle-aged rats and mice, although effects are mixed in aged rodents. Effects of E2 treatment on OR and OP memory consolidation can be mediated by both classical estrogen receptors (ERα and ERß), and depend on glutamate receptors (NMDA, mGluR1) and activation of numerous cell signaling cascades (e.g., ERK, PI3K/Akt, mTOR) and epigenetic processes (e.g., histone acetylation, DNA methylation). Acute P4 treatment given immediately after training also enhances OR and OP in young and middle-aged ovariectomized females by activating similar cell signaling pathways as E2 (e.g., ERK, mTOR). The few studies that have administered both hormones in combination suggest that treatment can enhance OR and OP, but that effects are highly dependent on factors such as dose and timing of administration. In addition to providing more detail on these general conclusions, this review will discuss directions for future avenues of research into the hormonal regulation of object memory.


Assuntos
Estrogênios/metabolismo , Hipocampo/fisiologia , Progesterona/metabolismo , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Animais , Humanos , Camundongos , Ratos
14.
Hippocampus ; 25(5): 616-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25483228

RESUMO

Although much is known about the neural mechanisms responsible for the mnemonic effects of 17ß-estradiol (E2 ), very little is understood about the mechanisms through which progesterone (P4 ) regulates memory. We previously showed that intrahippocampal infusion of P4 in ovariectomized female mice enhances object recognition (OR) memory consolidation in a manner dependent on activation of dorsal hippocampal ERK and mTOR signaling. However, the role of specific progesterone receptors (PRs) in mediating the effects of progesterone on memory consolidation and hippocampal cell signaling are unknown. Therefore, the goals of this study were to investigate the roles of membrane-associated and intracellular PRs in mediating hippocampal memory consolidation, and identify downstream cell signaling pathways activated by PRs. Membrane-associated PRs were targeted using bovine serum albumin-conjugated progesterone (BSA-P), and intracellular PRs (PR-A, PR-B) were targeted using the intracellular PR agonist R5020. Immediately after OR training, ovariectomized mice received bilateral dorsal hippocampal infusion of vehicle, P4 , BSA-P, or R5020. OR memory consolidation was enhanced by P4 , BSA-P, and R5020. However, only P4 and BSA-P activated ERK and mTOR signaling. Furthermore, dorsal hippocampal infusion of the ERK inhibitor U0126 blocked the memory-enhancing effects of BSA-P, but not R5020. The intracellular PR antagonist RU486 blocked the memory-enhancing effects of R5020, but not BSA-P. Interestingly, P4 robustly activated canonical Wnt signaling in the dorsal hippocampus, which is consistent with our recent findings that canonical Wnt signaling is necessary for OR memory consolidation. R5020, but not BSA-P, also elicited a modest increase in canonical Wnt signaling. Collectively, these data suggest that activation of ERK signaling is necessary for membrane-associated PRs to enhance OR, and indicate a role for canonical Wnt signaling in the memory-enhancing effects of intracellular PRs. This study provides the first evidence that membrane and intracellular PRs may employ different molecular mechanisms to enhance hippocampal memory.


Assuntos
Hipocampo/fisiologia , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Reconhecimento Psicológico/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Cateteres de Demora , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Feminino , Hipocampo/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Consolidação da Memória/efeitos dos fármacos , Consolidação da Memória/fisiologia , Camundongos Endogâmicos C57BL , Ovariectomia , Progesterona/administração & dosagem , Receptores de Progesterona/agonistas , Reconhecimento Psicológico/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
15.
Learn Mem ; 21(9): 457-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25128537

RESUMO

Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17ß-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Estradiol/farmacologia , Histonas/efeitos dos fármacos , Memória/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/fisiologia , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Hipocampo/fisiologia , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Memória/fisiologia , Camundongos , Regiões Promotoras Genéticas/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia
16.
Front Neuroendocrinol ; 35(4): 530-49, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24878494

RESUMO

Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17ß-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement.


Assuntos
Epigênese Genética/fisiologia , Estrogênios/metabolismo , Hipocampo/metabolismo , Memória/fisiologia , Animais , Metilação de DNA/fisiologia , Epigênese Genética/genética , Estradiol/metabolismo , Humanos
17.
Brain ; 137(Pt 3): 860-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24519975

RESUMO

Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome.


Assuntos
Síndrome de Down/metabolismo , Fator de Crescimento Neural/metabolismo , Prosencéfalo/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Síndrome de Down/enzimologia , Síndrome de Down/fisiopatologia , Feto/enzimologia , Feto/metabolismo , Feto/patologia , Idade Gestacional , Humanos , Metaloproteinase 9 da Matriz/fisiologia , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Fator de Crescimento Neural/biossíntese , Fator de Crescimento Neural/fisiologia , Prosencéfalo/enzimologia , Prosencéfalo/patologia , Precursores de Proteínas/fisiologia
18.
J Neurosci ; 33(31): 12619-26, 2013 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-23904598

RESUMO

Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical ß-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3ß, ß-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3ß levels, followed by a decrease in ß-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3ß/ß-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3ß phosphorylation and levels of ß-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.


Assuntos
Comportamento Exploratório/fisiologia , Reconhecimento Psicológico/fisiologia , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Ciclina D1/metabolismo , Proteína 4 Homóloga a Disks-Large , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Lateralidade Funcional/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Guanilato Quinases/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Proteínas de Membrana/metabolismo , Transtornos da Memória/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas , Proteínas Wnt/antagonistas & inibidores , beta Catenina/metabolismo
19.
Learn Mem ; 20(3): 147-55, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23422279

RESUMO

The mammalian target of rapamycin (mTOR) signaling pathway is an important regulator of protein synthesis and is essential for various forms of hippocampal memory. Here, we asked whether the enhancement of object recognition memory consolidation produced by dorsal hippocampal infusion of 17ß-estradiol (E(2)) is dependent on mTOR signaling in the dorsal hippocampus, and whether E(2)-induced mTOR signaling is dependent on dorsal hippocampal phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated kinase (ERK) activation. We first demonstrated that the enhancement of object recognition induced by E(2) was blocked by dorsal hippocampal inhibition of ERK, PI3K, or mTOR activation. We then showed that an increase in dorsal hippocampal ERK phosphorylation 5 min after intracerebroventricular (ICV) E(2) infusion was also blocked by dorsal hippocampal infusion of the three cell signaling inhibitors. Next, we found that ICV infusion of E(2) increased phosphorylation of the downstream mTOR targets S6K (Thr-421) and 4E-BP1 in the dorsal hippocampus 5 min after infusion, and that this phosphorylation was blocked by dorsal hippocampal infusion of inhibitors of ERK, PI3K, and mTOR. Collectively, these data demonstrate for the first time that activation of the dorsal hippocampal mTOR signaling pathway is necessary for E(2) to enhance object recognition memory consolidation and that E(2)-induced mTOR activation is dependent on upstream activation of ERK and PI3K signaling.


Assuntos
Estradiol/farmacologia , Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Animais , Western Blotting , Butadienos/farmacologia , Cromonas/farmacologia , Antagonistas de Estrogênios/farmacologia , Feminino , Injeções Intraventriculares , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Morfolinas/farmacologia , Nitrilas/farmacologia , Ovariectomia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Quinases S6 Ribossômicas 90-kDa/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores
20.
Curr Gerontol Geriatr Res ; 2012: 463909, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22545043

RESUMO

Down syndrome (DS) is a condition where a complete or segmental chromosome 21 trisomy causes variable intellectual disability, and progressive memory loss and neurodegeneration with age. Many research groups have examined development of the brain in DS individuals, but studies on age-related changes should also be considered, with the increased lifespan observed in DS. DS leads to pathological hallmarks of Alzheimer's disease (AD) by 40 or 50 years of age. Progressive age-related memory deficits occurring in both AD and in DS have been connected to degeneration of several neuronal populations, but mechanisms are not fully elucidated. Inflammation and oxidative stress are early events in DS pathology, and focusing on these pathways may lead to development of successful intervention strategies for AD associated with DS. Here we discuss recent findings and potential treatment avenues regarding development of AD neuropathology and memory loss in DS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...