Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276008

RESUMO

Diffuse intrinsic pontine glioma (DIPG), affecting children aged 4-7 years, is a rare, aggressive tumor that originates in the pons and then spreads to nearby tissue. DIPG is the leading cause of death for pediatric brain tumors due to its infiltrative nature and inoperability. Radiotherapy has only a palliative effect on stabilizing symptoms. In silico and preclinical studies identified ONC201 as a cytotoxic agent against some human cancer cell lines, including DIPG ones. A single-crystal X-ray analysis of the complex of the human mitochondrial caseinolytic serine protease type C (hClpP) and ONC201 (PDB ID: 6DL7) allowed hClpP to be identified as its main target. The hyperactivation of hClpP causes damage to mitochondrial oxidative phosphorylation and cell death. In some DIPG patients receiving ONC201, an acquired resistance was observed. In this context, a wide program was initiated to discover original scaffolds for new hClpP activators to treat ONC201-non-responding patients. Harmaline, a small molecule belonging to the chemical class of ß-carboline, was identified through Fingerprints for Ligands and Proteins (FLAP), a structure-based virtual screening approach. Molecular dynamics simulations and a deep in vitro investigation showed interesting information on the interaction and activation of hClpP by harmaline.

2.
Eur J Med Chem ; 266: 116135, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38219659

RESUMO

Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 µM and COX-2 IC50 = 0.35 µM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 µM and COX-2 IC50 > 50 µM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 µM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 µM and COX-2 IC50 = 3.6 µM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).


Assuntos
Doenças Neurodegenerativas , Humanos , Estrutura Molecular , Ciclo-Oxigenase 2/metabolismo , Domínio Catalítico , Relação Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismo , Isoxazóis/química , Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Aminoácidos
3.
Antibiotics (Basel) ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37627728

RESUMO

The discovery of compounds with antibacterial activity is crucial in the ongoing battle against antibiotic resistance. We developed two QSAR models to design six novel heteroaryl drug candidates and assessed their antibacterial properties against nine ATCC strains, including Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and also Salmonella enterica and Escherichia coli, many of which belong to the ESKAPE group. We combined PB4, a previously tested compound from published studies, with GC-VI-70, a newly discovered compound, with the best cytotoxicity/MIC profile. By testing sub-MIC concentrations of PB4 with five antibiotics (linezolid, gentamycin, ampicillin, erythromycin, rifampin, and imipenem), we evaluated the combination's efficacy against the ATCC strains. To assess the compounds' cytotoxicity, we conducted a 24 h and 48 h 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on colorectal adenocarcinoma (CaCo-2) cells. We tested the antibiotics alone and in combination with PB4. Encouragingly, PB4 reduced the MIC values for GC-VI-70 and for the various clinically used antibiotics. However, it is essential to note that all the compounds studied in this research exhibited cytotoxic activity against cells. These findings highlight the potential of using these compounds in combination with antibiotics to enhance their effectiveness at lower concentrations while minimizing cytotoxic effects.

4.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299686

RESUMO

Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1-100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.

5.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175318

RESUMO

Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push-pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein-ACE2 binding.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902248

RESUMO

Fluorescence imaging is constantly searching for new far-red emitting probes whose turn-on response is selective upon the interaction with specific biological targets. Cationic push-pull dyes could indeed respond to these requirements due to their intramolecular charge transfer (ICT) character, by which their optical properties can be tuned, and their ability to interact strongly with nucleic acids. Starting from the intriguing results recently achieved with some push-pull dimethylamino-phenyl dyes, two isomers obtained by switching the cationic electron acceptor head (either a methylpyridinium or a methylquinolinium) from the ortho to the para position have been scrutinized for their ICT dynamics, their affinity towards DNA and RNA, and in vitro behavior. By exploiting the marked fluorescence enhancement observed upon complexation with polynucleotides, fluorimetric titrations were employed to evaluate the dyes' ability as efficient DNA/RNA binders. The studied compounds exhibited in vitro RNA-selectivity by localizing in the RNA-rich nucleoli and within the mitochondria, as demonstrated by fluorescence microscopy. The para-quinolinium derivative showed some modest antiproliferative effect on two tumor cell lines as well as improved properties as an RNA-selective far-red probe in terms of both turn-on response (100-fold fluorescence enhancement) and localized staining ability, attracting interest as a potential theranostic agent.


Assuntos
Ácidos Nucleicos , RNA , Corantes Fluorescentes/metabolismo , DNA , Microscopia de Fluorescência
7.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744843

RESUMO

Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media.


Assuntos
Antineoplásicos , Corantes Fluorescentes , Antineoplásicos/farmacologia , DNA/química , Corantes Fluorescentes/química , Ionóforos , Análise Espectral , Água/química
8.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35745587

RESUMO

The identification and removal of all gross and microscopic tumor to render the patient disease free represents a huge challenge in ovarian cancer treatment. The presence of residual disease is an independent negative prognostic factor. Herein, we describe the synthesis and the "in vitro" evaluation of compounds as cyclooxygenase (COX)-1 inhibitors, the COX-1 isoform being an ovarian cancer biomarker, each bearing fluorochromes with different fluorescence features. Two of these compounds N-[4-(9-dimethylimino-9H-benzo[a]phenoxazin-5-ylamino) butyl]-2-(3,4-bis(4-methoxyphenyl)isoxazol-5-yl)acetamide chloride (RR11) and 3-(6-(4-(2-(3,4-bis(4-methoxyphenyl)isoxazole-5-yl)acetamido)butyl)amino-6-oxohexyl)-2-[7-(1,3-dihydro-1,1-dimethyl-3-ethyl 2H-benz[e]indolin-2-yl-idene)-1,3,5-heptatrienyl]-1,1-dimethyl-3-(6-carboxilato-hexyl)-1H-benz[e]indolium chloride, 23 (MSA14) were found to be potent and selective inhibitors of cyclooxygenase (COX)-1 "in vitro", and thus were further investigated "in vivo". The IC50 values were 0.032 and 0.087 µM for RR11 and 23 (MSA 14), respectively, whereas the COX-2 IC50 for RR11 is 2.4 µM while 23 (MSA14) did not inhibit COX-2 even at a 50 µM concentration. Together, this represented selectivity index = 75 and 874, respectively. Structure-based virtual screening (SBVS) performed with the Fingerprints for Ligands and Proteins (FLAP) software allowed both to differentiate highly active compounds from less active and inactive structures and to define their interactions inside the substrate-binding cavity of hCOX1. Fluorescent probes RR11 and 23 (MSA14), were used for preliminary near-infrared (NIR) fluorescent imaging (FLI) in human ovarian cancer (OVCAR-3 and SKOV-3) xenograft models. Surprisingly, a tumor-specific signal was observed for both tested fluorescent probes, even though this signal is not linked to the presence of COX-1.

9.
Antibiotics (Basel) ; 11(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740173

RESUMO

The World Health Organization has identified antimicrobial resistance as a public health emergency and developed a global priority pathogens list of antibiotic-resistant bacteria that can be summarized in the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacterales species), reminding us of their ability to escape the effect of antibacterial drugs. We previously tested new heteroaryl-ethylene compounds in order to define their spectrum of activity and antibacterial capability. Now, we focus our attention on PB4, a compound with promising MIC and MBC values in all conditions tested. In the present study, we evaluate the activity of PB4 on selected samples of ESKAPE isolates from nosocomial infections: 14 S. aureus, 6 E. faecalis, 7 E. faecium, 12 E. coli and 14 A. baumannii. Furthermore, an ATCC control strain was selected for all species tested. The MIC tests were performed according to the standard method. The PB4 MIC values were within very low ranges regardless of bacterial species and resistance profiles: from 0.12 to 2 mg/L for S. aureus, E. faecalis, E. faecium and A. baumannii. For E. coli, the MIC values obtained were slightly higher (4-64 mg/L) but still promising. The PB4 heteroaryl-ethylenic compound was able to counteract the bacterial growth of both high-priority Gram-positive and Gram-negative clinical strains. Our study contributes to the search for new molecules that can fight bacterial infections, in particular those caused by MDR bacteria in hospitals. In the future, it would be interesting to evaluate the activity of PB4 in animal models to test for its toxicity.

10.
Drug Discov Today Technol ; 10(1): e155-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24050245

RESUMO

Chemical modifications of drugs induced by phase I biotransformations significantly affect their pharmacokinetic properties. Because the metabolites produced can themselves have a pharmacological effect and an intrinsic toxicity, medicinal chemists need to accurately predict the sites of metabolism (SoM) of drugs as early as possible. However, site of metabolism prediction is rarely accompanied by a prediction of the relative abundance of the various metabolites. Such a prediction would be a great help in the study of drug­ drug interactions and in the process of reducing the toxicity of potential drug candidates. The aim of this paper is to present recent developments in the prediction of xenobiotic metabolism and to use concrete examples to explain the computational mechanism employed.


Assuntos
Algoritmos , Sistema Enzimático do Citocromo P-450/metabolismo , Preparações Farmacêuticas/metabolismo , Software , Simulação por Computador , Humanos
11.
Bioorg Med Chem ; 21(17): 5233-45, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871443

RESUMO

A novel class of indole derivatives characterized by a (αE)-α-(1H-indol-3-ylmethylene)benzeneacetic acid or amide scaffold was synthesized. These derivatives, assayed for cell-growth inhibition activity against a panel of six different tumor cell lines, showed strong antiproliferative activity and selectivity mainly towards DU145 cell line. In particular, compounds 2d-m and 5 stand out for their cell growth inhibitory activity and, among them, compound 2d emerged for its selectivity towards DU145 with respect to other tested tumor cell lines. DU145 treated with 1µM of 2d for 72h showed p21(Cip1) induction and suppression of Akt signaling together with induction of Rb. From a computational point of view, two different approaches were used in order to study topology and electronic properties of the novel compounds and to shed light on their drug-likeness properties. Firstly, topological and electronic features of the compounds endowed with the most relevant biological activity were deepened; in parallel, some ADME properties like solubility and permeability were predicted.


Assuntos
Amidas/química , Antineoplásicos/química , Indóis/química , Fenilacetatos/química , Amidas/farmacocinética , Amidas/toxicidade , Antineoplásicos/farmacocinética , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Meia-Vida , Humanos , Conformação Molecular , Fenilacetatos/farmacocinética , Fenilacetatos/toxicidade , Eletricidade Estática
12.
Eur J Med Chem ; 50: 441-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22365410

RESUMO

In the present study the synthesis of new Linezolid-like molecules has been achieved by substitution of the oxazolidinone central heterocyclic moiety with a 1,2,4-oxadiazole ring. Two series of 1,2,4-oxadiazoles, bearing different side-chains and containing a varying number of fluorine atoms, were synthesized and preliminarily tested for biological activity against some Gram-positive and Gram-negative bacteria using Linezolid and Ceftriaxone as reference drugs.


Assuntos
Acetamidas/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Oxazolidinonas/síntese química , Oxazolidinonas/farmacologia , Acetamidas/farmacologia , Ceftriaxona/farmacologia , Linezolida , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazolidinonas/química , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 9(5): 1608-13, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21243151

RESUMO

The synthesis and characterisation of new trans 2-(thiophen-2-yl)vinyl pyridinium, imidazolium and quinoilinium iodides is reported together with their solvatochromic shifts and EFISH characterization. 2-{(E)-2-[5'-(dibutylamino)-2,2'-bithien-5-yl]vinyl}-1-methyl pyridinium and quinolinium iodides display high µ.ß(vec) values up to 1200 × 10(-48) esu. The promising non-linear optical (NLO) properties of this new family of chromophores, which can be further improved by the design of highly efficient systems exploiting the donor and acceptor properties of both heteroaromatic rings and substituents, make them suitable candidates for second harmonic generation imaging with interesting biological applications.


Assuntos
Iodetos/síntese química , Tiofenos/química , Compostos de Vinila/síntese química , Estrutura Molecular
14.
Bioorg Med Chem ; 16(7): 4150-9, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-18248996

RESUMO

A new molecular modelling approach based on physico-chemical and pharmacokinetic properties, called Volsurf plus, was used to design new heterocyclic compounds with antiproliferative activity. The synthesis and in vitro antitumour tests on a breast carcinoma cell line (MCF7) confirmed VOLSURF predicted activity values.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Furanos/química , Iodetos/síntese química , Iodetos/farmacologia , Compostos de Vinila/síntese química , Compostos de Vinila/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Iodetos/química , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Compostos de Vinila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...