Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35161803

RESUMO

Water losses from water distribution means have a high environmental impact in terms of natural resource depletion (water, energy, ecosystems). This work aims to develop an optical airborne surveillance service for the detection of water leaks (WADI-Water-tightness Airborne Detection Implementation) to provide water utilities with adequate and timely information on leaks in water transportation mains outside urban areas. Firstly, a series of measurement campaigns were performed with two hyperspectral cameras and a thermal infrared camera in order to select the most appropriate wavelengths and combinations thereof for best revealing high moisture areas, which are taken as a proxy for water leakage. The Temperature-Vegetation-Index method (T-VI, also known as Triangle/Trapezoid method) was found to provide the highest contrast-to-noise ratio. This preliminary work helped select the most appropriate onboard instrumentation for two types of aerial platforms, manned (MAV) and unmanned (UAV). Afterwards, a series of measurement campaigns were performed from 2017 to 2019 in an operational environment over two water distribution networks in France and Portugal. Artificial leaks were introduced and both remote sensing platforms successfully detected them when excluding the unfavorable situations of a recent rain event or high vegetation presence. With the most recent equipment configuration, known and unknown real leaks in the overflown part of a water transportation network in Portugal have been detected. A significant number of false alarms were also observed which were due either to natural water flows (groundwater exfiltration, irrigation runoff and ponds) or to vegetation-cover variability nearby water-distribution nodes. Close interaction with the water utilities, and ancillary information like topographic factors (e.g., slope orientation), are expected to reduce the false alarm rates and improve WADI's methodology performance.


Assuntos
Água Subterrânea , Tecnologia de Sensoriamento Remoto , Ecossistema , Meio Ambiente , Água
2.
Sci Total Environ ; 780: 146311, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33765468

RESUMO

Understanding how climatic and anthropogenic drivers will influence coastal lagoons is fundamental to guarantee their preservation and sustainability. The Ria Formosa (coastal lagoon, South coast of Portugal) is a very important ecosystem that supports diverse economic activities in the region. The 3D coupled hydrodynamic-biogeochemical model SCHISM was validated and used to assess the influence of climate change and anthropogenic pressures on the water quality of the Ria Formosa. Five scenarios were simulated: reference scenario (S0), mean sea level rise (SLR) of 0.5 m (S1), increase of the air temperature of 1.68 °C (S2), increase of the outflow from the wastewater treatment plants (WWTP) by 50% (S3) and a combined scenario (S4). Results suggest that SLR of 0.5 m promotes an increase of 0.5-3 in the salinity near the area of influence of the WWTP. SLR decreases the inorganic nutrient concentrations in these areas by about 40-60%, due to an increase of the dilution. In contrast, the increase of the outflow from the WWTP by 50% increases the nutrients concentrations by about 20-40%. The increase of the air temperature alone by 1.68 °C increases the water temperature by 0-1 °C. The combined scenario suggests antagonist effects in the nutrient concentrations. Overall, the trophic index (TRIX) of the lagoon calculated for the scenarios exhibits only minor differences relative to the reference scenario, except in some areas near the WWTP discharges. In these areas, TRIX tends to increase with the increase of the outflow from the WWTP in scenario S3. These results provide further insight into the response of coastal lagoons, and the Ria Formosa in particular, to future changes and contribute to support their management.

3.
Mar Pollut Bull ; 80(1-2): 132-47, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24472369

RESUMO

A flexible 2D/3D oil spill modeling system addressing the distinct nature of the surface and water column fluids, major oil weathering and improved retention/reposition processes in coastal zones is presented. The system integrates hydrodynamic, transport and oil weathering modules, which can be combined to offer different-complexity descriptions as required by applications across the river-to-ocean continuum. Features include accounting for different composition and reology in the surface and water column mixtures, as well as spreading, evaporation, water-in-oil emulsification, shoreline retention, dispersion and dissolution. The use of unstructured grids provides flexibility and efficiency in handling spills in complex geometries and across scales. The use of high-order Eulerian-Lagrangian methods allows for computational efficiency and for handling key processes in ways consistent with their distinct mathematical nature and time scales. The modeling system is tested through a suite of synthetic, laboratory and realistic-domain benchmarks, which demonstrate robust handling of key processes and of 2D/3D couplings. The application of the modeling system to a spill scenario at the entrance of a port in a coastal lagoon illustrates the power of the approach to represent spills that occur in coastal regions with complex boundaries and bathymetry.


Assuntos
Monitoramento Ambiental/métodos , Modelos Químicos , Poluição por Petróleo/estatística & dados numéricos , Petróleo/análise , Poluentes Químicos da Água/análise , Recuperação e Remediação Ambiental , Poluição por Petróleo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...