Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroendocrinol ; 35(9): e13234, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36735894

RESUMO

Tackling the growing incidence and prevalence of obesity urgently requires uncovering new molecular pathways with therapeutic potential. The brain, and in particular the hypothalamus, is a major integrator of metabolic signals from peripheral tissues that regulate functions such as feeding behavior and energy expenditure. In obesity, hypothalamic capacity to sense nutritional status and regulate these functions is altered. An emerging line of research is that hypothalamic lipid metabolism plays a critical role in regulating energy balance. Here, we focus on the carnitine palmitoyltransferase 1 (CPT1) enzyme family responsible for long-chain fatty acid metabolism. The evidence suggests that two of its isoforms expressed in the brain, CPT1A and CPT1C, play a crucial role in hypothalamic lipid metabolism, and their promise as targets in food intake and bodyweight management is currently being intensively investigated. In this review we describe and discuss the metabolic actions and potential up- and downstream effectors of hypothalamic CPT1 isoforms, and posit the need to develop innovative nanomedicine platforms for selective targeting of CPT1 and related nutrient sensors in specific brain areas as potential next-generation therapy to treat obesity.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo Energético , Humanos , Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético/fisiologia , Obesidade/metabolismo , Isoformas de Proteínas/metabolismo , Hipotálamo/metabolismo
2.
Biomater Sci ; 11(7): 2336-2347, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36804651

RESUMO

Targeting brain lipid metabolism is a promising strategy to regulate the energy balance and fight metabolic diseases such as obesity. The development of stable platforms for selective delivery of drugs, particularly to the hypothalamus, is a challenge but a possible solution for these metabolic diseases. Attenuating fatty acid oxidation in the hypothalamus via CPT1A inhibition leads to satiety, but this target is difficult to reach in vivo with the current drugs. We propose using an advanced crosslinked polymeric micelle-type nanomedicine that can stably load the CPT1A inhibitor C75-CoA for in vivo control of the energy balance. Central administration of the nanomedicine induced a rapid attenuation of food intake and body weight in mice via regulation of appetite-related neuropeptides and neuronal activation of specific hypothalamic regions driving changes in the liver and adipose tissue. This nanomedicine targeting brain lipid metabolism was successful in the modulation of food intake and peripheral metabolism in mice.


Assuntos
Metabolismo dos Lipídeos , Nanomedicina , Camundongos , Animais , Metabolismo Energético , Obesidade/metabolismo , Hipotálamo/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675212

RESUMO

Sensing of long-chain fatty acids (LCFA) in the hypothalamus modulates energy balance, and its disruption leads to obesity. To date, the effects of saturated or unsaturated LCFA on hypothalamic-brown adipose tissue (BAT) axis and the underlying mechanisms have remained largely unclear. Our aim was to characterize the main molecular pathways involved in the hypothalamic regulation of BAT thermogenesis in response to LCFA with different lengths and degrees of saturation. One-week administration of high-fat diet enriched in monounsaturated FA led to higher BAT thermogenesis compared to a saturated FA-enriched diet. Intracerebroventricular infusion of oleic and linoleic acids upregulated thermogenesis markers and temperature in brown fat of mice, and triggered neuronal activation of paraventricular (PaV), ventromedial (VMH) and arcuate (ARC) hypothalamic nuclei, which was not found with saturated FAs. The neuron-specific protein carnitine palmitoyltransferase 1-C (CPT1C) was a crucial effector of oleic acid since the FA action was blunted in CPT1C-KO mice. Moreover, changes in the AMPK/ACC/malonyl-CoA pathway and fatty acid synthase expression were evoked by oleic acid. Altogether, central infusion of unsaturated but not saturated LCFA increases BAT thermogenesis through CPT1C-mediated sensing of FA metabolism shift, which in turn drive melanocortin system activation. These findings add new insight into neuronal circuitries activated by LCFA to drive thermogenesis.


Assuntos
Tecido Adiposo Marrom , Hipotálamo , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Ácidos Graxos/metabolismo , Hipotálamo/metabolismo , Ácidos Oleicos/metabolismo , Termogênese/genética , Termogênese/fisiologia
4.
Cell Mol Life Sci ; 78(23): 7469-7490, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34718828

RESUMO

The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.


Assuntos
Endocanabinoides/metabolismo , Hipotálamo/patologia , Obesidade/patologia , Receptores de Canabinoides/metabolismo , Animais , Metabolismo Energético , Humanos , Hipotálamo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
5.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201257

RESUMO

Despite the substantial role played by the hypothalamus in the regulation of energy balance and glucose homeostasis, the exact mechanisms and neuronal circuits underlying this regulation remain poorly understood. In the last 15 years, investigations using transgenic models, optogenetic, and chemogenetic approaches have revealed that SF1 neurons in the ventromedial hypothalamus are a specific lead in the brain's ability to sense glucose levels and conduct insulin and leptin signaling in energy expenditure and glucose homeostasis, with minor feeding control. Deletion of hormonal receptors, nutritional sensors, or synaptic receptors in SF1 neurons triggers metabolic alterations mostly appreciated under high-fat feeding, indicating that SF1 neurons are particularly important for metabolic adaptation in the early stages of obesity. Although these studies have provided exciting insight into the implications of hypothalamic SF1 neurons on whole-body energy homeostasis, new questions have arisen from these results. Particularly, the existence of neuronal sub-populations of SF1 neurons and the intricate neurocircuitry linking these neurons with other nuclei and with the periphery. In this review, we address the most relevant studies carried out in SF1 neurons to date, to provide a global view of the central role played by these neurons in the pathogenesis of obesity and diabetes.


Assuntos
Diabetes Mellitus/patologia , Hipotálamo/patologia , Neurônios/patologia , Obesidade/patologia , Fator Esteroidogênico 1/metabolismo , Animais , Diabetes Mellitus/etiologia , Diabetes Mellitus/metabolismo , Humanos , Hipotálamo/metabolismo , Neurônios/metabolismo , Obesidade/etiologia , Obesidade/metabolismo
6.
Br J Pharmacol ; 178(7): 1507-1523, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33444462

RESUMO

BACKGROUND AND PURPOSE: The enzyme α/ß-hydrolase domain containing 6 (ABHD6), a new member of the endocannabinoid system, is a promising therapeutic target against neuronal-related diseases. However, how ABHD6 activity is regulated is not known. ABHD6 coexists in protein complexes with the brain-specific carnitine palmitoyltransferase 1C (CPT1C). CPT1C is involved in neuro-metabolic functions, depending on brain malonyl-CoA levels. Our aim was to study CPT1C-ABHD6 interaction and determine whether CPT1C is a key regulator of ABHD6 activity depending on nutritional status. EXPERIMENTAL APPROACH: Co-immunoprecipitation and FRET assays were used to explore ABHD6 interaction with CPT1C or modified malonyl-CoA-insensitive or C-terminal truncated CPT1C forms. Cannabinoid CB1 receptor-mediated signalling was investigated by determining cAMP levels. A novel highly sensitive fluorescent method was optimized to measure ABHD6 activity in non-neuronal and neuronal cells and in brain tissues from wild-type (WT) and CPT1C-KO mice. KEY RESULTS: CPT1C interacted with ABHD6 and negatively regulated its hydrolase activity, thereby regulating 2-AG downstream signalling. Accordingly, brain tissues of CPT1C-KO mice showed increased ABHD6 activity. CPT1C malonyl-CoA sensing was key to the regulatory role on ABHD6 activity and CB1 receptor signalling. Fasting, which attenuates brain malonyl-CoA, significantly increased ABHD6 activity in hypothalamus from WT, but not CPT1C-KO, mice. CONCLUSIONS AND IMPLICATIONS: Our finding that negative regulation of ABHD6 activity, particularly in the hypothalamus, is sensitive to nutritional status throws new light on the characterization and the importance of the proteins involved as potential targets against diseases affecting the CNS.


Assuntos
Carnitina O-Palmitoiltransferase , Monoacilglicerol Lipases/metabolismo , Estado Nutricional , Animais , Carnitina O-Palmitoiltransferase/genética , Hidrolases , Malonil Coenzima A , Camundongos
7.
J Lipid Res ; 60(7): 1260-1269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31138606

RESUMO

The endocannabinoid (eCB) system regulates energy homeostasis and is linked to obesity development. However, the exact dynamic and regulation of eCBs in the hypothalamus during obesity progression remain incompletely described and understood. Our study examined the time course of responses in two hypothalamic eCBs, 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamine (AEA), in male and female mice during diet-induced obesity and explored the association of eCB levels with changes in brown adipose tissue (BAT) thermogenesis and body weight. We fed mice a high-fat diet (HFD), which induced a transient increase (substantial at 7 days) in hypothalamic eCBs, followed by a progressive decrease to basal levels with a long-term HFD. This transient rise at early stages of obesity is considered a physiologic compensatory response to BAT thermogenesis, which is activated by diet surplus. The eCB dynamic was sexually dimorphic: hypothalamic eCBs levels were higher in female mice, who became obese at later time points than males. The hypothalamic eCBs time course positively correlated with thermogenesis activation, but negatively matched body weight, leptinemia, and circulating eCB levels. Increased expression of eCB-synthetizing enzymes accompanied the transient hypothalamic eCB elevation. Icv injection of eCB did not promote BAT thermogenesis; however, administration of thermogenic molecules, such as central leptin or a peripheral ß3-adrenoreceptor agonist, induced a significant increase in hypothalamic eCBs, suggesting a directional link from BAT thermogenesis to hypothalamic eCBs. This study contributes to the understanding of hypothalamic regulation of obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/metabolismo , Hipotálamo/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos Araquidônicos/metabolismo , Feminino , Glicerídeos/metabolismo , Masculino , Camundongos , Alcamidas Poli-Insaturadas/metabolismo , Caracteres Sexuais
8.
Mol Metab ; 19: 75-85, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30448371

RESUMO

OBJECTIVE: Carnitine palmitoyltransferase 1C (CPT1C) is implicated in central regulation of energy homeostasis. Our aim was to investigate whether CPT1C in the ventromedial nucleus of the hypothalamus (VMH) is involved in the activation of brown adipose tissue (BAT) thermogenesis in the early stages of diet-induced obesity. METHODS: CPT1C KO and wild type (WT) mice were exposed to short-term high-fat (HF) diet feeding or to intracerebroventricular leptin administration and BAT thermogenesis activation was evaluated. Body weight, adiposity, food intake, and leptinemia were also assayed. RESULTS: Under 7 days of HF diet, WT mice showed a maximum activation peak of BAT thermogenesis that counteracted obesity development, whereas this activation was impaired in CPT1C KO mice. KO animals evidenced higher body weight, adiposity, hyperleptinemia, ER stress, and disrupted hypothalamic leptin signaling. Leptin-induced BAT thermogenesis was abolished in KO mice. These results indicate an earlier onset leptin resistance in CPT1C KO mice. Since AMPK in the VMH is crucial in the regulation of BAT thermogenesis, we analyzed if CPT1C was a downstream factor of this pathway. Genetic inactivation of AMPK within the VMH was unable to induce BAT thermogenesis and body weight loss in KO mice, indicating that CPT1C is likely downstream AMPK in the central mechanism modulating thermogenesis within the VMH. Quite opposite, the expression of CPT1C in the VMH restored the phenotype. CONCLUSION: CPT1C is necessary for the activation of BAT thermogenesis driven by leptin, HF diet exposure, and AMPK inhibition within the VMH. This study underscores the importance of CPT1C in the activation of BAT thermogenesis to counteract diet-induced obesity.


Assuntos
Tecido Adiposo Marrom/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Obesidade/metabolismo , Adiposidade , Animais , Peso Corporal , Dieta Hiperlipídica , Ingestão de Alimentos , Metabolismo Energético , Homeostase , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Termogênese/fisiologia , Núcleo Hipotalâmico Ventromedial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...