Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 19(17): 16680-96, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21935030

RESUMO

With wavelength-division multiplexing (WDM) rapidly nearing its scalability limits, space-division multiplexing (SDM) seems the only option to further scale the capacity of optical transport networks. In order for SDM systems to continue the WDM trend of reducing energy and cost per bit with system capacity, integration will be key to SDM. Since integration is likely to introduce non-negligible crosstalk between multiple parallel transmission paths, multiple-input multiple output (MIMO) signal processing techniques will have to be used. In this paper, we discuss MIMO capacities in optical SDM systems, including related outage considerations which are an important part in the design of such systems. In order to achieve the low-outage standards required for optical transport networks, SDM transponders should be capable of individually addressing, and preferably MIMO processing all modes supported by the optical SDM waveguide. We then discuss the effect of distributed optical noise in MIMO SDM systems and focus on the impact of mode-dependent loss (MDL) on system capacity and system outage. Through extensive numerical simulations, we extract scaling rules for mode-average and mode-dependent loss and show that MIMO SDM systems composed of up to 128 segments and supporting up to 128 modes can tolerate up to 1 dB of per-segment MDL at 90% of the system's full capacity at an outage probability of 10(-4).

2.
Phys Rev Lett ; 101(16): 163901, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18999670

RESUMO

The instantaneous optical Kerr effect in optical fibers is a nonlinear phenomenon that can impose limits on the ability of fiber-optic communication systems to transport information. We present here a conservative estimate of the "fiber channel" capacity in an optically routed network. We show that the fiber capacity per unit bandwidth for a given distance significantly exceeds current record experimental demonstrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...