Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(28): 19247-19256, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958556

RESUMO

The present investigation fits the reaction kinetics of a lithium-sulfur (Li-S) battery with polar electrolyte employing a novel two-phase continuum multipore model. The continuum two-phase model considers processes in both the liquid electrolyte phase and the solid precipitates phase, where the diffusion coefficients of the Li+ ions in a solvent-softened solid state are determined from molecular dynamics simulations. Solubility experiments yield the saturation concentration of sulfur and lithium sulfides in the polar electrolyte employed in this study. The model describes the transport of dissolved molecular and ion species in pores of different size in solvated or desolvated form, depending on pore size. The Li-S reaction model in this study is validated for electrolyte 1 M LiPF6 in EC/DMC. It includes seven redox reactions and two cyclic non-electrochemical reactions in the cathode, and the lithium redox reaction at the anode. Electrochemical reactions are assumed to take place in the electrolyte solution or the solid state and cyclic reactions are assumed to take place in the liquid electrolyte phase only. The determination of the reaction kinetics parameters takes place via fitting the model predictions with experimental data of a cyclic voltammetry cycle with in operando UV-vis spectroscopy.

2.
J Contam Hydrol ; 241: 103811, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33878512

RESUMO

The advection-dispersion equation (ADE) often fails to predict solute transport, in part due to incomplete mixing in the subsurface, which the development of non-local models has attempted to deal with. One such model is dual-domain mass transfer (DDMT); one parameter that exists within this model type is called immobile porosity. Here, we explore the complexity of estimating immobile porosity under varying flow rates and density dependencies in a large-scale heterogeneous system. Immobile porosity is estimated experimentally and using numerical models in 3-D flow systems, and is defined by domains of comparatively low advective velocity instead of truly immobile regions at the pore scale. Tracer experiments were conducted in a mesoscale 3-D tank system with embedded large impermeable zones and the generated data were analyzed using a numerical model. The impermeable zones were used to explore how large-scale structure and heterogeneity affect parameter estimation of immobile porosity, assuming a dual-porosity model, and resultant characterization of the aquifer system. Spatially and temporally co-located fluid electrical conductivity (σf) and bulk apparent electrical conductivity (σb)-using geophysical methods-were measured to estimate immobile porosity, and numerical modeling (i.e., SEAWAT and R3t) was conducted to explore controls of the immobile zones on the experimentally observed flow and transport. Results showed that density-dependent flow increased the hysteresis between measured fluid and bulk electrical conductivity, resulting in larger interpreted immobile pore-space estimates. Increasing the dispersivity in the model simulations decreased the estimated immobile porosity; flow rate had no impact. Overall, the results of this study highlight the difficulty faced in determining immobile porosity values in field settings, where hydrogeologic processes may vary temporally. Our results also highlight that immobile porosity is an effective parameter in an upscaled model whose physical meaning is not necessarily clear and that may not align with intuitive interpretations of a porosity.


Assuntos
Água Subterrânea , Movimentos da Água , Hidrologia , Laboratórios , Modelos Teóricos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...