Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JTCVS Tech ; 20: 58-70, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37555041

RESUMO

Objective: To develop a minimally invasive, reproducible model of chronic severe mitral regurgitation (MR) that replicates the clinical phenotype of left atrial (LA) and left ventricular dilation and susceptibility to atrial fibrillation. Methods: Under transesophageal echocardiographic guidance, chordae tendinae were avulsed using endovascular forceps until the ratio of regurgitant jet area to LA area was ≥70%. Animals survived for an average of 8.6 ± 1.6 months (standard deviation) and imaged with monthly transthoracic echocardiography (TTE). Animals underwent baseline and preterminal magnetic resonance imaging. Terminal studies included TTE, transesophageal echocardiography, and rapid atrial pacing to test inducibility of atrial tachyarrhythmias. Results: Eight dogs underwent creation of severe MR and interval monitoring. Two were excluded-one died from acute heart failure, and the other had resolution of MR. Six dogs underwent the full experimental protocol; only one required medical management of clinical heart failure. MR remained severe over time, with a mean terminal regurgitant jet area to LA area of 71 ± 14% (standard deviation) and regurgitant fraction of 52 ± 11%. Mean LA volume increased over 130% (TTE: 163 ± 147%, P = .039; magnetic resonance imaging: 132 ± 54%, P = .011). Mean left ventricular end-diastolic volume increased by 38 ± 21% (P = .008). Inducible atrial tachyarrhythmias were seen in 4 of 6 animals at terminal surgery, and none at baseline. Conclusions: Within the 6 dogs that successfully completed the full experimental protocol, this model replicated the clinical phenotype of severe MR, which led to marked structural and electrophysiologic cardiac remodeling. This model allowed for precise measurements at repeated time points and will facilitate future studies to elucidate the mechanisms of atrial and ventricular remodeling secondary to MR and the pathophysiology of valvular atrial fibrillation.

2.
J Magn Reson Imaging ; 16(3): 311-9, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12205588

RESUMO

PURPOSE: To evaluate whether dynamic imaging of the coronary arteries can be performed with intracoronary infusion of low-dose gadolinium (Gd)-based contrast agent and assess the effect of long duration and multiple infusions on the image signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). MATERIALS AND METHODS: Dynamic coronary magnetic resonance (MR) imaging (130 msec/image) and contrast agent first pass myocardial perfusion studies were performed with intracoronary infusions of low-dose Gd-based MR contrast agent on dogs (N = 4) using a fast multislice gradient recalled echo (GRE) sequence. RESULTS: Contrast-enhanced coronary arteries were clearly imaged during infusion periods as long as 2.3 minutes. The SNR and CNR of the contrast-enhanced coronary arteries remained essentially unchanged over multiple consecutive angiographic sessions. In addition, we demonstrated that first pass studies performed with intracoronary injection of MR contrast agent can be used as a means of assessing regional myocardial perfusion. CONCLUSION: These studies demonstrated that, using intracoronary infusion of Gd, coronary magnetic resonance angiography (MRA) can be performed with high temporal resolution, and multiple low-dose slow infusions of Gd-based MR contrast agent can be performed without compromise of the vessel SNR and CNR.


Assuntos
Vasos Coronários/patologia , Angiografia por Ressonância Magnética/métodos , Animais , Meios de Contraste/administração & dosagem , Cães , Gadolínio/administração & dosagem , Infusões Intra-Arteriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...