Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 22(3): 52, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770358

RESUMO

Although microfluidic micro-electromechanical systems (MEMS) are well suited to investigate the effects of mechanical force on large populations of cells, their high-throughput capabilities cannot be fully leveraged without optimizing the experimental conditions of the fluid and particles flowing through them. Parameters such as flow velocity and particle size are known to affect the trajectories of particles in microfluidic systems and have been studied extensively, but the effects of temperature and buffer viscosity are not as well understood. In this paper, we explored the effects of these parameters on the timing of our own cell-impact device, the µHammer, by first tracking the velocity of polystyrene beads through the device and then visualizing the impact of these beads. Through these assays, we find that the timing of our device is sensitive to changes in the ratio of inertial forces to viscous forces that particles experience while traveling through the device. This sensitivity provides a set of parameters that can serve as a robust framework for optimizing device performance under various experimental conditions, without requiring extensive geometric redesigns. Using these tools, we were able to achieve an effective throughput over 360 beads/s with our device, demonstrating the potential of this framework to improve the consistency of microfluidic systems that rely on precise particle trajectories and timing.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Soluções Tampão , Desenho de Equipamento , Microesferas , Tamanho da Partícula , Poliestirenos/química , Temperatura , Viscosidade
2.
Nature ; 446(7139): 1066-9, 2007 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-17460669

RESUMO

Nanomechanical resonators enable the measurement of mass with extraordinary sensitivity. Previously, samples as light as 7 zeptograms (1 zg = 10(-21) g) have been weighed in vacuum, and proton-level resolution seems to be within reach. Resolving small mass changes requires the resonator to be light and to ring at a very pure tone-that is, with a high quality factor. In solution, viscosity severely degrades both of these characteristics, thus preventing many applications in nanotechnology and the life sciences where fluid is required. Although the resonant structure can be designed to minimize viscous loss, resolution is still substantially degraded when compared to measurements made in air or vacuum. An entirely different approach eliminates viscous damping by placing the solution inside a hollow resonator that is surrounded by vacuum. Here we demonstrate that suspended microchannel resonators can weigh single nanoparticles, single bacterial cells and sub-monolayers of adsorbed proteins in water with sub-femtogram resolution (1 Hz bandwidth). Central to these results is our observation that viscous loss due to the fluid is negligible compared to the intrinsic damping of our silicon crystal resonator. The combination of the low resonator mass (100 ng) and high quality factor (15,000) enables an improvement in mass resolution of six orders of magnitude over a high-end commercial quartz crystal microbalance. This gives access to intriguing applications, such as mass-based flow cytometry, the direct detection of pathogens, or the non-optical sizing and mass density measurement of colloidal particles.


Assuntos
Produtos Biológicos/química , Células/química , Microfluídica/instrumentação , Microfluídica/métodos , Nanopartículas/química , Bactérias/química , Bactérias/isolamento & purificação , Produtos Biológicos/análise , Coloides/análise , Coloides/química , Peso Molecular , Nanopartículas/análise , Proteínas/análise , Proteínas/química , Quartzo , Soluções/química , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...