Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Trauma Acute Care Surg ; 73(4): 895-901, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22836001

RESUMO

BACKGROUND: Military service members are often exposed to at least one explosive event, and many blast-exposed veterans present with symptoms of traumatic brain injury. However, there is little information on the intensity and duration of blast necessary to cause brain injury. METHODS: Varying intensity shock tube blasts were focused on the head of anesthetized ferrets, whose thorax and abdomen were protected. Injury evaluations included physiologic consequences, gross necropsy, and histologic diagnosis. The resulting apnea, meningeal bleeding, and fatality were analyzed using logistic regressions to determine injury risk functions. RESULTS: Increasing severity of blast exposure demonstrated increasing apnea immediately after the blast. Gross necropsy revealed hemorrhages, frequently near the brain stem, at the highest blast intensities. Apnea, bleeding, and fatality risk functions from blast exposure to the head were determined for peak overpressure and positive-phase duration. The 50% risk of apnea and moderate hemorrhage were similar, whereas the 50% risk of mild hemorrhage was independent of duration and required lower overpressures (144 kPa). Another fatality risk function was determined with existing data for scaled positive-phase durations from 1 millisecond to 20 milliseconds. CONCLUSION: The first primary blast brain injury risk assessments for mild and moderate/severe injuries in a gyrencephalic animal model were determined. The blast level needed to cause a mild/moderate brain injury may be similar to or less than that needed for pulmonary injury. The risk functions can be used in future research for blast brain injury by providing realistic injury risks to guide the design of protection or evaluate injury.


Assuntos
Traumatismos por Explosões/complicações , Lesões Encefálicas/etiologia , Encéfalo/patologia , Explosões , Animais , Traumatismos por Explosões/diagnóstico , Lesões Encefálicas/diagnóstico , Modelos Animais de Doenças , Furões , Masculino , Índices de Gravidade do Trauma
2.
Ann Adv Automot Med ; 55: 243-52, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22105400

RESUMO

While one third of all fatal motor vehicle crashes involve rollover of the vehicle, a substantially large portion of these rollover crashes involve planar impacts (e.g., frontal, side or rear impact) that influence the crash kinematics and subsequently the injury outcome. The objective of the study was to evaluate the distribution of planar impacts in rollover crashes, and in particular, to describe the differences in the underlying crash kinematics, injury severity and the regional distribution of injuries when compared to the rollover-dominated crashes without significant planar impact (i.e., primary rollovers). Sampled cases (n=6,900) from the U.S. National Automotive Sampling System - Crashworthiness Data System, representing approximately 3.3 million belted drivers involved in a rollover crash in years 1998-2008, were analyzed. Single vehicle rollover crashes with significant planar impact (21% of all rollover crashes) were in general more likely to result in occupant fatality and involved higher incidence of moderate to severe injuries compared to single vehicle primary rollovers (p<0.05). A substantial proportion of the planar impact rollovers ended in single quarter turn crashes (30%), mostly resulting from a frontal impact (59%). While chest was the most frequently injured body region among all rollover victims sustaining severe injuries, severe injuries sustained in primary rollovers were more isolated (single body region) in comparison to the ones sustained in rollovers with planar impacts. The results emphasize the higher risk of rollover victims sustaining an injury and the differences in distribution of injuries sustained when a planar impact is associated with the rollover crash.


Assuntos
Acidentes de Trânsito , Fenômenos Biomecânicos , Humanos , Incidência , Manejo de Espécimes , Tórax , Estados Unidos , Ferimentos e Lesões
3.
Nature ; 457(7225): 63-6, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122636

RESUMO

Self-gravity plays a decisive role in the final stages of star formation, where dense cores (size approximately 0.1 parsecs) inside molecular clouds collapse to form star-plus-disk systems. But self-gravity's role at earlier times (and on larger length scales, such as approximately 1 parsec) is unclear; some molecular cloud simulations that do not include self-gravity suggest that 'turbulent fragmentation' alone is sufficient to create a mass distribution of dense cores that resembles, and sets, the stellar initial mass function. Here we report a 'dendrogram' (hierarchical tree-diagram) analysis that reveals that self-gravity plays a significant role over the full range of possible scales traced by (13)CO observations in the L1448 molecular cloud, but not everywhere in the observed region. In particular, more than 90 per cent of the compact 'pre-stellar cores' traced by peaks of dust emission are projected on the sky within one of the dendrogram's self-gravitating 'leaves'. As these peaks mark the locations of already-forming stars, or of those probably about to form, a self-gravitating cocoon seems a critical condition for their existence. Turbulent fragmentation simulations without self-gravity-even of unmagnetized isothermal material-can yield mass and velocity power spectra very similar to what is observed in clouds like L1448. But a dendrogram of such a simulation shows that nearly all the gas in it (much more than in the observations) appears to be self-gravitating. A potentially significant role for gravity in 'non-self-gravitating' simulations suggests inconsistency in simulation assumptions and output, and that it is necessary to include self-gravity in any realistic simulation of the star-formation process on subparsec scales.


Assuntos
Gravitação , Astros Celestes/química , Algoritmos , Astronomia , Monóxido de Carbono/análise , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...