Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 22(3): 52, 2020 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-32770358

RESUMO

Although microfluidic micro-electromechanical systems (MEMS) are well suited to investigate the effects of mechanical force on large populations of cells, their high-throughput capabilities cannot be fully leveraged without optimizing the experimental conditions of the fluid and particles flowing through them. Parameters such as flow velocity and particle size are known to affect the trajectories of particles in microfluidic systems and have been studied extensively, but the effects of temperature and buffer viscosity are not as well understood. In this paper, we explored the effects of these parameters on the timing of our own cell-impact device, the µHammer, by first tracking the velocity of polystyrene beads through the device and then visualizing the impact of these beads. Through these assays, we find that the timing of our device is sensitive to changes in the ratio of inertial forces to viscous forces that particles experience while traveling through the device. This sensitivity provides a set of parameters that can serve as a robust framework for optimizing device performance under various experimental conditions, without requiring extensive geometric redesigns. Using these tools, we were able to achieve an effective throughput over 360 beads/s with our device, demonstrating the potential of this framework to improve the consistency of microfluidic systems that rely on precise particle trajectories and timing.


Assuntos
Dispositivos Lab-On-A-Chip , Sistemas Microeletromecânicos/instrumentação , Soluções Tampão , Desenho de Equipamento , Microesferas , Tamanho da Partícula , Poliestirenos/química , Temperatura , Viscosidade
2.
J R Soc Interface ; 16(156): 20190239, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31362613

RESUMO

Dry adhesives using surface microstructures inspired by climbing animals have been recognized for their potentially novel capabilities, with relevance to a range of applications including pick-and-place handling. Past work has suggested that performance may be strongly dependent on variability in the critical defect size among fibrillar sub-contacts. However, it has not been directly verified that the resulting adhesive strength distribution is well described by the statistical theory of fracture used. Using in situ contact visualization, we characterize adhesive strength on a fibril-by-fibril basis for a synthetic fibrillar adhesive. Two distinct detachment mechanisms are observed. The fundamental, design-dependent mechanism involves defect propagation from within the contact. The secondary mechanism involves defect propagation from fabrication imperfections at the perimeter. The existence of two defect populations complicates characterization of the statistical properties. This is addressed by using the mean order ranking method to isolate the fundamental mechanism. The statistical properties obtained are subsequently used within a bimodal framework, allowing description of the secondary mechanism. Implications for performance are discussed, including the improvement of strength associated with elimination of fabrication imperfections. This statistical analysis of defect-dependent detachment represents a more complete approach to the characterization of fibrillar adhesives, offering new insight for design and fabrication.


Assuntos
Adesivos/química , Materiais Biomiméticos/química , Modelos Químicos , Animais , Lagartos
3.
BMC Evol Biol ; 18(1): 116, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-30021522

RESUMO

BACKGROUND: One of the most perplexing questions in evolutionary biology is why some lineages diversify into many species, and others do not. In many cases, ecological opportunity has played an important role, leading to diversification along trophic or habitat-based axes. The Goodeidae (Teleostomi: Cyprinodontiformes) are a family of freshwater fishes with two subfamilies: Goodeinae (42 species, viviparous, heterogeneous habitats, Mesa Central of Mexico) and Empetrichthyinae (4 species, oviparous, homogeneous habitats, Great Basin of the United States). These discrepant sets of characteristics and their sister-group relationship make the goodeids amenable to a comparative study of diversification. We gathered lateral body images from more than 1600 specimens of all extant species in the family. Geometric morphometric, and phylogenetic comparative analyses were used to address whether higher species diversity correlates with higher rates of morphological shape evolution and whether there are differences in functional/habitat modules between the two subfamilies. RESULTS: This study recovered a higher rate of overall body shape evolution in the Goodeinae that is nearly double in magnitude compared to the Empetrichthyinae. A modularity test indicated that the Goodeinae displayed elevated rates of morphological evolution in comparison to the Empetrichthyinae when only trunk (locomotor) regions were compared between subfamilies. No significant differences in evolutionary shape rates were recovered when the trophic (head) regions were compared between subfamilies. DISCUSSION: These results support the hypothesis that Mexican goodeids radiated via an ecological opportunity scenario into a wide-array of novel habitats in the island-like Mesa Central as evidenced by their high rate of shape evolution, relative to the Empetrichthyinae. This study quantitatively unraveled the drivers of evolution and eliminated trophic specialization as a driving force within the Goodeidae. CONCLUSIONS: A combination of phylogenetic and morphometric data, and phylogenetic comparative analyses were used to examine body shape rate evolution within the Goodeidae. Results support the hypothesis that species in the subfamily Goodeinae on the central Mexican plateau had a higher rate of body shape evolution relative to its sister subfamily Empetrichthyinae in the Great Basin suggesting that the Goodeinae diversified via an ecological opportunity scenario along habitat, rather than trophic axes.


Assuntos
Biodiversidade , Ciprinodontiformes/classificação , Espécies em Perigo de Extinção , Água Doce , Animais , Calibragem , Ciprinodontiformes/anatomia & histologia , Geografia , México , Filogenia , Especificidade da Espécie , Fatores de Tempo
4.
Artigo em Inglês | MEDLINE | ID: mdl-28320655

RESUMO

Through the use of a laser Doppler vibrometer, it is shown that a 31% variation in quality factor can occur due to the effect of undercutting of the device layers outside of the anchors of a 220-MHz aluminum nitride contour-mode resonator. This undercutting is a result of the isotropic etch process used to release the device from the substrate. This paper shows that the variation in Q is a function of the release distance, L , between the active region of the resonator and the edge of this released region. This paper also determined a design modification that eliminated this issue and achieved a Q of 3048, which is independent of L .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...