Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 3(4): 101829, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36386871

RESUMO

Large-scale, high-throughput specificity assays to characterize binding properties within a competitive and complex environment of potential binder-target pairs remain challenging and cost prohibitive. Barcode cycle sequencing (BCS) is a molecular binding assay for proteins, peptides, and other small molecules that is built on a next-generation sequencing (NGS) chip. BCS uses a binder library and targets labeled with unique DNA barcodes. Upon binding, binder barcodes are ligated to target barcodes and sequenced to identify encoded binding events. For complete details on the use and execution of this protocol, please refer to Hong et al. (2022).


Assuntos
Código de Barras de DNA Taxonômico , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Código de Barras de DNA Taxonômico/métodos , Sequência de Bases
2.
iScience ; 25(1): 103586, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005536

RESUMO

We demonstrate early progress toward constructing a high-throughput, single-molecule protein sequencing technology utilizing barcoded DNA aptamers (binders) to recognize terminal amino acids of peptides (targets) tethered on a next-generation sequencing chip. DNA binders deposit unique, amino acid-identifying barcodes on the chip. The end goal is that, over multiple binding cycles, a sequential chain of DNA barcodes will identify the amino acid sequence of a peptide. Toward this, we demonstrate successful target identification with two sets of target-binder pairs: DNA-DNA and Peptide-Protein. For DNA-DNA binding, we show assembly and sequencing of DNA barcodes over six consecutive binding cycles. Intriguingly, our computational simulation predicts that a small set of semi-selective DNA binders offers significant coverage of the human proteome. Toward this end, we introduce a binder discovery pipeline that ultimately could merge with the chip assay into a technology called ProtSeq, for future high-throughput, single-molecule protein sequencing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...