Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 46(4): 311-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17205537

RESUMO

The most frequent cause of familial clear cell renal cell carcinoma (RCC) is von Hippel-Lindau disease and the VHL tumor suppressor gene (TSG) is inactivated in most sporadic clear cell RCC. Although there is relatively little information on the mechanisms of tumorigenesis of clear cell RCC without VHL inactivation, a subset of familial cases harbors a balanced constitutional chromosome 3 translocation. To date nine different chromosome 3 translocations have been associated with familial or multicentric clear cell RCC; and in three cases chromosome 6 was also involved. To identify candidate genes for renal tumorigenesis we characterized a constitutional translocation, t(3;6)(q22;q16.1) associated with multicentric RCC without evidence of VHL target gene dysregulation. Analysis of breakpoint sequences revealed a 1.3-kb deletion on chromosome 6 within the intron of a 2 exon predicted gene (NT_007299.434). However, RT-PCR analysis failed to detect the expression of this gene in lymphoblast, fibroblast, or kidney tumor cell lines. No known genes were disrupted by the translocation breakpoints but several candidate TSGs (e.g., EPHB1, EPHA7, PPP2R3A RNF184, and STAG1) map within close proximity to the breakpoints.


Assuntos
Carcinoma de Células Renais/genética , Cromossomos Humanos Par 3/genética , Cromossomos Humanos Par 6/genética , Translocação Genética , Linhagem Celular Transformada , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular
2.
Biochem Biophys Res Commun ; 341(1): 175-83, 2006 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-16412978

RESUMO

Nonhomologous end joining is one of the major pathways by which cells repair double-strand breaks, and the XRCC4-DNA ligase IV complex is required for the ligation step. To better understand the regulation and stability of XRCC4 and DNA ligase IV, we investigated the ubiquitination status of these two proteins. We identified a predominantly monoubiquitinated form of XRCC4, and higher molecular weight forms of ubiquitinated XRCC4 were detected in lower abundance. In response to etoposide-induced DNA damage, ubiquitinated XRCC4 became more pronounced and was additionally phosphorylated. We confirmed that DNA ligase IV is unstable in the absence of XRCC4, with a half-life of approximately 30-90 min. Unlike XRCC4, we did not detect ubiquitinated forms of DNA ligase IV, and we found that the presence of XRCC4 stabilized DNA ligase IV more significantly than proteasome inhibitors. Monoubiquitination of XRCC4 may play a critical role in the regulation of nonhomologous end joining.


Assuntos
Dano ao DNA/fisiologia , DNA Ligases/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Ubiquitina/metabolismo , Linhagem Celular , DNA Ligase Dependente de ATP , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...