Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 93(10): 2149-2168, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34022089

RESUMO

This field case study reports findings on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water carried out at an aquaculture farm and two irrigation locations in Hawaii. We used a flow cell incorporating PtRu/graphite anode and graphite cathode for the disinfection/ammonia removal from aquaculture wastewater, and a flow cell assembled with graphite plates as both anode and cathode for the disinfection of irrigation water. The removal of ammonia followed the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Ammonia removal rate increased with the increase in NaCl concentration, applied current density, or flow rate. The disinfection of aquaculture wastewater can be readily achieved due to the presence of highly germicidal free chlorine species. The disinfection of irrigation water was realized without the addition of chemicals. The disinfection mechanism was attributed to the formation of free chlorine from the anodic oxidation of chloride ions naturally occurring in the water sources. The disinfection efficiency decreased with increasing organic matter concentration. In addition to the flow cell approach, we also successfully demonstrated the disinfection of irrigation water by adding electrolyzed NaCl solution or purging with a mixture of air and chlorine gas, both of which were generated on-site. PRACTITIONER POINTS: Field case study on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water was carried out in Hawaii. Electrochemical flow cell assembled with PtRu/graphite anode and graphite cathode effectively removes ammonia from aquaculture wastewater. Ammonia removal proceeds via the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Electrochemical flow cell assembled with commercial graphite electrodes enables fast disinfection of coliform bacteria and E. coli. The primary disinfection mechanism is through chlorine species electro-generated from chloride oxidation at the graphite anode.


Assuntos
Águas Residuárias , Purificação da Água , Amônia , Aquicultura , Desinfecção , Eletrodos , Escherichia coli , Havaí , Oxirredução , Água
2.
Water Environ Res ; 93(4): 535-548, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32920945

RESUMO

In this work, we report experimental studies on the disinfection of irrigation water using a flow cell assembled with low-cost graphite plates as both anode and cathode. Natural irrigation waters collected from two irrigation locations (Reservoir 225 and Bott Well Pond) in Hawaii were used, and synthetic irrigation waters were prepared based on the chemical analysis of natural irrigation waters. The concentration of chloride was 10.2 mg/L in the synthetic Reservoir 225 water and 6.9 mg/L in the synthetic Bott Well pond water. Escherichia coli K12 ER2738 was selected as a model bacterium to evaluate the disinfection capability of the flow cell. Experiments performed in the synthetic irrigation waters showed that E. coli was inactivated by free chlorine species electro-generated from oxidation of chloride ions at the graphite anode. Complete removal of E. coli was achieved within 10 min in the synthetic irrigation waters. The disinfection of the natural irrigation waters took about four times longer than the disinfection of the synthetic irrigation waters. This result is most likely due to the presence of organic matter (and possibly other oxidizable species) in the natural irrigation waters. PRACTITIONER POINTS: Electrochemical flow cell disinfects to 99.9% with commercial graphite electrodes. E. coli is removed in 10 min from synthetic irrigation water by a flow cell. E. coli removal takes 4× longer in natural irrigation water. A minimum current density of ≥1 mA/cm2 is required for disinfection. The primary disinfection mechanism is through chlorine generated from chloride ions.


Assuntos
Grafite , Purificação da Água , Desinfecção , Eletrodos , Escherichia coli , Água
3.
Biotechnol Prog ; 37(1): e3085, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32975043

RESUMO

A key aspect of large-scale production of biotherapeutics is a well-designed and consistently-executed upstream cell culture process. Process analytical technology tools provide enhanced monitoring and control capabilities to support consistent process execution, and also have potential to aid in maintenance of product quality at desired levels. One such tool, Raman spectroscopy, has matured as a useful technique to achieve real-time monitoring and control of key cell culture process attributes. We developed a Raman spectroscopy-based nutrient control strategy to enable dual control of lactate and glucose levels for a fed-batch CHO cell culture process for monoclonal antibody (mAb) production. To achieve this, partial least squares-based chemometric models for real-time prediction of glucose and lactate concentrations were developed and deployed in feedback control loops. In particular, feeding of lactic acid post-metabolic shift was investigated based on previous work that has shown the impact of lactate levels on ammonium as well as mAb product quality. Three feeding strategies were assessed for impact on cell metabolism, productivity, and product quality: bolus-fed glucose, glucose control at 4 g/L, or simultaneous glucose control at 4 g/L and lactate control at 2 g/L. The third feeding strategy resulted in a significant reduction in ammonium levels (68%) while increasing mAb galactosylation levels by approximately 50%. This work demonstrated that when deployed in a cell culture process, Raman spectroscopy is an effective technique for simultaneous control of multiple nutrient feeds, and that lactic acid feeding can have a positive impact on both cell metabolism and mAb product quality.


Assuntos
Anticorpos Monoclonais/química , Técnicas de Cultura Celular por Lotes/métodos , Galactose/química , Glucose/metabolismo , Ácido Láctico/metabolismo , Análise Espectral Raman/métodos , Animais , Células CHO , Cricetinae , Cricetulus
4.
Clin Exp Metastasis ; 32(4): 335-44, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25749879

RESUMO

Breast cancer can reoccur, often as bone metastasis, many years if not decades after the primary tumor has been treated. The factors that stimulate dormant metastases to grow are not known, but bone metastases are often associated with skeletal trauma. We used a dormancy model of MDA-MB-231BRMS1, a metastasis-suppressed human breast cancer cell line, co-cultured with MC3T3-E1 osteoblasts in a long term, three dimensional culture system to test the hypothesis that bone remodeling cytokines could stimulate dormant cells to grow. The cancer cells attached to the matrix produced by MC3T3-E1 osteoblasts but grew slowly or not at all until the addition of bone remodeling cytokines, TNFα and IL-ß. Stimulation of cell proliferation by these cytokines was suppressed with indomethacin, an inhibitor of cyclooxygenase and of prostaglandin production, or a prostaglandin E2 (PGE2) receptor antagonist. Addition of PGE2 directly to the cultures also stimulated cell proliferation. MCF-7, non-metastatic breast cancer cells, remained dormant when co-cultured with normal human osteoblast and fibroblast growth factor. Similar to the MDA-MB-231BRMS1 cells, MCF-7 proliferation increased in response to TNFα and IL-ß. These findings suggest that changes in the bone microenvironment due to inflammatory cytokines associated with bone repair or excess turnover may trigger the occurrence of latent bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Dinoprostona/farmacologia , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células 3T3 , Animais , Remodelação Óssea , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Feminino , Fatores de Crescimento de Fibroblastos/farmacologia , Humanos , Indometacina/farmacologia , Interleucina-6/farmacologia , Células MCF-7 , Camundongos , Osteoblastos , Receptores de Prostaglandina E/antagonistas & inibidores , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...