Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 242(3): 1218-1237, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38481030

RESUMO

Nitrogen is an essential nutrient for plant growth and serves as a signaling molecule to regulate gene expression inducing physiological, growth and developmental responses. An excess or deficiency of nitrogen may have adverse effects on plants. Studying nitrogen uptake will help us understand the molecular mechanisms of utilization for targeted molecular breeding. Here, we identified and functionally validated an NAC (NAM-ATAF1/2-CUC2) transcription factor based on the transcriptomes of two apple rootstocks with different nitrogen uptake efficiency. NAC1, a target gene of miR164, directly regulates the expression of the high-affinity nitrate transporter (MhNRT2.4) and citric acid transporter (MhMATE), affecting root nitrogen uptake. To examine the role of MhNAC1 in nitrogen uptake, we produced transgenic lines that overexpressed or silenced MhNAC1. Silencing MhNAC1 promoted nitrogen uptake and citric acid secretion in roots, and enhanced plant tolerance to low nitrogen conditions, while overexpression of MhNAC1 or silencing miR164 had the opposite effect. This study not only revealed the role of the miR164-MhNAC1 module in nitrogen uptake in apple rootstocks but also confirmed that citric acid secretion in roots affected nitrogen uptake, which provides a research basis for efficient nitrogen utilization and molecular breeding in apple.


Assuntos
Malus , Malus/genética , Malus/metabolismo , Nitrogênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Genet ; 56(3): 505-516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347217

RESUMO

Dwarfing rootstocks have transformed the production of cultivated apples; however, the genetic basis of rootstock-induced dwarfing remains largely unclear. We have assembled chromosome-level, near-gapless and haplotype-resolved genomes for the popular dwarfing rootstock 'M9', the semi-vigorous rootstock 'MM106' and 'Fuji', one of the most commonly grown apple cultivars. The apple orthologue of auxin response factor 3 (MdARF3) is in the Dw1 region of 'M9', the major locus for rootstock-induced dwarfing. Comparing 'M9' and 'MM106' genomes revealed a 9,723-bp allele-specific long terminal repeat retrotransposon/gypsy insertion, DwTE, located upstream of MdARF3. DwTE is cosegregated with the dwarfing trait in two segregating populations, suggesting its prospective utility in future dwarfing rootstock breeding. In addition, our pipeline discovered mobile mRNAs that may contribute to the development of dwarfed scion architecture. Our research provides valuable genomic resources and applicable methodology, which have the potential to accelerate breeding dwarfing rootstocks for apple and other perennial woody fruit trees.


Assuntos
Malus , Malus/genética , Haplótipos/genética , Raízes de Plantas/genética , Melhoramento Vegetal , Fenótipo
3.
Sci Rep ; 13(1): 11583, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463950

RESUMO

In grafted apple, rootstock-derived signals influence scion cold tolerance by initiating physiological changes to survive over the winter. To understand the underlying molecular interactions between scion and rootstock responsive to cold, we developed transcriptomics and metabolomics data in the stems of two scion/rootstock combinations, 'Gala'/'G202' (cold resistant rootstock) and 'Gala'/'M9' (cold susceptible rootstock). Outer layers of scion and rootstock stem, including vascular tissues, were collected from the field-grown grafted apple during the winter. The clustering of differentially expressed genes (DEGs) and gene ontology enrichment indicated distinct expression dynamics in the two graft combinations, which supports the dependency of scion cold tolerance on the rootstock genotypes. We identified 544 potentially mobile mRNAs of DEGs showing highly-correlated seasonal dynamics between scion and rootstock. The mobility of a subset of 544 mRNAs was validated by translocated genome-wide variants and the measurements of selected RNA mobility in tobacco and Arabidopsis. We detected orthologous genes of potentially mobile mRNAs in Arabidopsis thaliana, which belong to cold regulatory networks with RNA mobility. Together, our study provides a comprehensive insight into gene interactions and signal exchange between scion and rootstock responsive to cold. This will serve for future research to enhance cold tolerance of grafted tree crops.


Assuntos
Malus , Malus/genética , Malus/metabolismo , RNA/metabolismo , Perfilação da Expressão Gênica , Metabolômica , Genótipo
5.
Front Plant Sci ; 13: 965397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247546

RESUMO

Highbush blueberry (Vaccinium corymbosum, 2n = 4x = 48) is the most cultivated type of blueberry, both in New Zealand and overseas. Its perceived nutritional value is conferred by phytonutrients, particularly anthocyanins. Identifying the genetic mechanisms that control the biosynthesis of these metabolites would enable faster development of cultivars with improved fruit qualities. Here, we used recently released tools for genetic mapping in autotetraploids to build a high-density linkage map in highbush blueberry and to detect quantitative trait loci (QTLs) for fruit anthocyanin content. Genotyping was performed by target sequencing, with ∼18,000 single nucleotide polymorphism (SNP) markers being mapped into 12 phased linkage groups (LGs). Fruits were harvested when ripe for two seasons and analyzed with high-performance liquid chromatography-mass spectrometry (HPLC-MS): 25 different anthocyanin compounds were identified and quantified. Two major QTLs that were stable across years were discovered, one on LG2 and one on LG4, and the underlying candidate genes were identified. Interestingly, the presence of anthocyanins containing acylated sugars appeared to be under strong genetic control. Information gained in this study will enable the design of molecular markers for marker-assisted selection and will help build a better understanding of the genetic control of anthocyanin biosynthesis in this crop.

6.
G3 (Bethesda) ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34009255

RESUMO

Commercially grown kiwifruit (genus Actinidia) are generally of two sub-species which have a base haploid genome of 29 chromosomes. The yellow-fleshed Actinidia chinensis var. chinensis, is either diploid (2n = 2x = 58) or tetraploid (2n = 4x = 116) and the green-fleshed cultivar A. chinensis var. deliciosa "Hayward," is hexaploid (2n = 6x = 174). Advances in breeding green kiwifruit could be greatly sped up by the use of molecular resources for more efficient and faster selection, for example using marker-assisted selection (MAS). The key genetic marker that has been implemented for MAS in hexaploid kiwifruit is for gender testing. The limited marker-trait association has been reported for other polyploid kiwifruit for fruit and production traits. We have constructed a high-density linkage map for hexaploid green kiwifruit using genotyping-by-sequence (GBS). The linkage map obtained consists of 3686 and 3940 markers organized in 183 and 176 linkage groups for the female and male parents, respectively. Both parental linkage maps are co-linear with the A. chinensis "Red5" reference genome of kiwifruit. The linkage map was then used for quantitative trait locus (QTL) mapping, and successfully identified QTLs for king flower number, fruit number and weight, dry matter accumulation, and storage firmness. These are the first QTLs to be reported and discovered for complex traits in hexaploid kiwifruit.


Assuntos
Actinidia , Actinidia/genética , Frutas/genética , Genótipo , Melhoramento Vegetal , Mapeamento Cromossômico
7.
Front Plant Sci ; 10: 1341, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708950

RESUMO

Most Rubus species have a biennial cycle of flowering and fruiting with an intervening period of winter dormancy, in common with many perennial fruit crops. Annual-fruiting (AF) varieties of raspberry (Rubus idaeus and Rubus occidentalis L.) and blackberry (Rubus subgenus Rubus) are able to flower and fruit in one growing season, without the intervening dormant period normally required in biennial-fruiting (BF) varieties. We used a red raspberry (R. idaeus) population segregating for AF obtained from a cross between NC493 and 'Chilliwack' to identify genetic factors controlling AF. Genotyping by sequencing (GBS) was used to generate saturated linkage maps in both parents. Trait mapping in this population indicated that AF is controlled by two newly identified loci (RiAF3 and RiAF4) located on Rubus linkage groups (LGs) 3 and 4. The location of these loci was analyzed using single-nucleotide polymorphism (SNP) markers on independent red raspberry and blackberry populations segregating for the AF trait. This confirmed that AF in Rubus is regulated by loci on LG 3 and 4, in addition to a previously reported locus on LG 7. Comparative RNAseq analysis at the time of floral bud differentiation in an AF and a BF variety revealed candidate genes potentially regulating the trait.

8.
Hortic Res ; 6: 116, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31645970

RESUMO

Rubus fruits are high-value crops that are sought after by consumers for their flavor, visual appeal, and health benefits. To meet this demand, production of red and black raspberries (R. idaeus L. and R. occidentalis L.), blackberries (R. subgenus Rubus), and hybrids, such as Boysenberry and marionberry, is growing worldwide. Rubus breeding programmes are continually striving to improve flavor, texture, machine harvestability, and yield, provide pest and disease resistance, improve storage and processing properties, and optimize fruits and plants for different production and harvest systems. Breeders face numerous challenges, such as polyploidy, the lack of genetic diversity in many of the elite cultivars, and until recently, the relative shortage of genetic and genomic resources available for Rubus. This review will highlight the development of continually improving genetic maps, the identification of Quantitative Trait Loci (QTL)s controlling key traits, draft genomes for red and black raspberry, and efforts to improve gene models. The development of genetic maps and markers, the molecular characterization of wild species and germplasm, and high-throughput genotyping platforms will expedite breeding of improved cultivars. Fully sequenced genomes and accurate gene models facilitate identification of genes underlying traits of interest and enable gene editing technologies such as CRISPR/Cas9.

9.
Hortic Res ; 5: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038785

RESUMO

A bud sport is a lateral shoot, inflorescence or single flower/fruit with a visibly different phenotype from the rest of the plant. The new phenotype is often caused by a stable somatic mutation in a single cell that is passed on to its clonal descendants and eventually populates part or all of a meristem. In many cases, a bud sport can be vegetatively propagated, thereby preserving the novel phenotype without sexual reproduction. Bud sports provide new characteristics while retaining the desirable qualities of the parent plant, which is why many bud sports have been developed into popular cultivars. We present an overview of the history of bud sports, the causes and methods of detecting somaclonal variation, and the types of mutant phenotypes that have arisen spontaneously. We focus on examples where the molecular or cytological changes causing the phenotype have been identified. Analysis of these sports has provided valuable insight into developmental processes, gene function and regulation, and in some cases has revealed new information about layer-specific roles of some genes. Examination of the molecular changes causing a phenotype and in some cases reversion back to the original state has contributed to our understanding of the mechanisms that drive genomic evolution.

10.
BMC Genomics ; 19(1): 257, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29661190

RESUMO

BACKGROUND: Most published genome sequences are drafts, and most are dominated by computational gene prediction. Draft genomes typically incorporate considerable sequence data that are not assigned to chromosomes, and predicted genes without quality confidence measures. The current Actinidia chinensis (kiwifruit) 'Hongyang' draft genome has 164 Mb of sequences unassigned to pseudo-chromosomes, and omissions have been identified in the gene models. RESULTS: A second genome of an A. chinensis (genotype Red5) was fully sequenced. This new sequence resulted in a 554.0 Mb assembly with all but 6 Mb assigned to pseudo-chromosomes. Pseudo-chromosomal comparisons showed a considerable number of translocation events have occurred following a whole genome duplication (WGD) event some consistent with centromeric Robertsonian-like translocations. RNA sequencing data from 12 tissues and ab initio analysis informed a genome-wide manual annotation, using the WebApollo tool. In total, 33,044 gene loci represented by 33,123 isoforms were identified, named and tagged for quality of evidential support. Of these 3114 (9.4%) were identical to a protein within 'Hongyang' The Kiwifruit Information Resource (KIR v2). Some proportion of the differences will be varietal polymorphisms. However, as most computationally predicted Red5 models required manual re-annotation this proportion is expected to be small. The quality of the new gene models was tested by fully sequencing 550 cloned 'Hort16A' cDNAs and comparing with the predicted protein models for Red5 and both the original 'Hongyang' assembly and the revised annotation from KIR v2. Only 48.9% and 63.5% of the cDNAs had a match with 90% identity or better to the original and revised 'Hongyang' annotation, respectively, compared with 90.9% to the Red5 models. CONCLUSIONS: Our study highlights the need to take a cautious approach to draft genomes and computationally predicted genes. Our use of the manual annotation tool WebApollo facilitated manual checking and correction of gene models enabling improvement of computational prediction. This utility was especially relevant for certain types of gene families such as the EXPANSIN like genes. Finally, this high quality gene set will supply the kiwifruit and general plant community with a new tool for genomics and other comparative analysis.


Assuntos
Actinidia/genética , Genoma de Planta , Genes de Plantas , Genótipo , Anotação de Sequência Molecular , Proteínas de Plantas/genética
11.
Hortic Res ; 5: 8, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423238

RESUMO

Black raspberry (Rubus occidentalis L.) is a niche fruit crop valued for its flavor and potential health benefits. The improvement of fruit and cane characteristics via molecular breeding technologies has been hindered by the lack of a high-quality reference genome. The recently released draft genome for black raspberry (ORUS 4115-3) lacks assembly of scaffolds to chromosome scale. We used high-throughput chromatin conformation capture (Hi-C) and Proximity-Guided Assembly (PGA) to cluster and order 9650 out of 11,936 contigs of this draft genome assembly into seven pseudo-chromosomes. The seven pseudo-chromosomes cover ~97.2% of the total contig length (~223.8 Mb). Locating existing genetic markers on the physical map resolved multiple discrepancies in marker order on the genetic map. Centromeric regions were inferred from recombination frequencies of genetic markers, alignment of 303 bp centromeric sequence with the PGA, and heat map showing the physical contact matrix over the entire genome. We demonstrate a high degree of synteny between each of the seven chromosomes of black raspberry and a high-quality reference genome for strawberry (Fragaria vesca L.) assembled using only PacBio long-read sequences. We conclude that PGA is a cost-effective and rapid method of generating chromosome-scale assemblies from Illumina short-read sequencing data.

12.
J Exp Bot ; 69(9): 2379-2390, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29190381

RESUMO

Branching has a major influence on the overall shape and productivity of a plant. Strigolactones (SLs) have been identified as plant hormones that have a key role in suppressing the outgrowth of axillary meristems. CAROTENOID CLEAVAGE DIOXYGENASE (CCD) genes are integral to the biosynthesis of SLs and are well characterized in annual plants, but their role in woody perennials is relatively unknown. We identified CCD7 and CCD8 orthologues from apple and demonstrated that MdCCD7 and MdCCD8 are able to complement the Arabidopsis branching mutants max3 and max4 respectively, indicating conserved function. RNAi lines of MdCCD7 show reduced gene expression and increased branching in apple. We performed reciprocal grafting experiments with combinations of MdCCD7 RNAi and wild-type 'Royal Gala' as rootstocks and scion. Unexpectedly, wild-type roots were unable to suppress branching in MdCCD7 RNAi scions. Another key finding was that MdCCD7 RNAi scions initiated phytomers at an increased rate relative to the wild type, resulting in a greater node number and primary shoot length. We suggest that localized SL biosynthesis in the shoot, rather than roots, controls axillary bud outgrowth and shoot growth rate in apple.


Assuntos
Dioxigenases/genética , Lactonas/metabolismo , Malus/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Brotos de Planta/crescimento & desenvolvimento , Dioxigenases/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/crescimento & desenvolvimento , Malus/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/genética
13.
Hortic Res ; 4: 17009, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28435686

RESUMO

Apple dwarfing rootstocks cause earlier shoot termination and reduced root and shoot mass. To identify physiological factors responsible for rootstock-induced growth restriction, we compared vascular-enriched gene expression between two dwarfing rootstocks ('M27' and 'M9') and the vigorous rootstock 'M793' using RNA sequencing and quantitative reverse transcriptase PCR. Differentially expressed genes common to both dwarfing rootstocks belonged to five main biological processes: (1) primary metabolism, (2) cell wall synthesis and modification, (3) secondary metabolism, (4) hormone signalling and response and (5) redox homeostasis. Genes promoting the biosynthesis of amino acids, lipids and cell walls were downregulated in dwarfing rootstocks, whereas genes promoting the breakdown of these compounds were upregulated. The only exception to this trend was the upregulation of starch synthesis genes in dwarfing rootstocks. Non-structural carbohydrate analysis demonstrated that starch concentrations in 'M9' roots, stems and grafted 'Royal Gala' ('RG') scions were double that of equivalent tissues from 'RG' homo-grafted trees ('RG'/'RG'). Fructose and glucose concentrations were much lower in all three tissues of the 'RG'/'M9' trees. Together, these data indicate that dwarfing rootstocks are in a state of sugar depletion and reduced cellular activity despite having large starch reserves. Another significant finding was the over-accumulation of flavonoids and the downregulation of auxin influx transporters MdAUX1 and MdLAX2 in dwarfing rootstocks. We propose that both factors reduce polar auxin transport. The results of this study contribute novel information about the physiological state of dwarfing rootstocks.

14.
Hortic Res ; 2: 15001, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26504562

RESUMO

The apple dwarfing rootstock 'Malling9' ('M9') has been used worldwide both to reduce scion vigour and as a genetic source for breeding new rootstocks. Progeny of 'M9' segregate for rootstock-induced dwarfing of the scion, indicating that this trait is controlled by one or more genetic factors. A quantitative trait locus (QTL) analysis of a rootstock population derived from the cross between 'M9' × 'Robusta5' (non-dwarfing) and grafted with 'Braeburn' scions identified a major QTL (Dw1) on linkage group (LG) 5, which exhibits a significant influence on dwarfing of the scion. A smaller-effect QTL affecting dwarfing (Dw2) was identified on LG11, and four minor-effect QTLs were found on LG6, LG9, LG10 and LG12. Phenotypic analysis indicates that the combination of Dw1 and Dw2 has the strongest influence on rootstock-induced dwarfing, and that Dw1 has a stronger effect than Dw2. Genetic markers linked to Dw1 and Dw2 were screened over 41 rootstock accessions that confer a range of effects on scion growth. The majority of the dwarfing and semi-dwarfing rootstock accessions screened carried marker alleles linked to Dw1 and Dw2. This suggests that most apple dwarfing rootstocks have been derived from the same genetic source.

15.
BMC Plant Biol ; 15: 230, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26394845

RESUMO

BACKGROUND: The vigour and precocity of trees highly influences their efficiency in commercial production. In apple, dwarfing rootstocks allow high-density plantings while their precocious flowering enables earlier fruit production. Currently, there is a lack of pear (Pyrus communis L.) rootstocks that are equivalent to the high yielding apple rootstock 'M9'. For the efficient breeding of new Pyrus rootstocks it is crucial to understand the genetic determinants of vigour control and precocity. In this study we used quantitative trait loci (QTLs) analysis to identify genetic loci associated with the desired traits, using a segregating population of 405 F1 P. communis seedlings from a cross between 'Old Home' and 'Louise Bonne de Jersey' (OHxLBJ). The seedlings were grafted as rootstocks with 'Doyenne du Comice' scions and comprehensively phenotyped over four growing seasons for traits related to tree architecture and flowering, in order to describe the growth of the scions. RESULTS: A high density single nucleotide polymorphism (SNP)-based genetic map comprising 597 polymorphic pear and 113 apple markers enabled the detection of QTLs influencing expression of scion vigour and precocity located on linkage groups (LG)5 and LG6 of 'Old Home'. The LG5 QTL maps to a position that is syntenic to the apple 'Malling 9' ('M9') Dw1 locus at the upper end of LG5. An allele of a simple sequence repeat (SSR) associated with apple Dw1 segregated with dwarfing and precocity in pear and was identified in other pear germplasm accessions. The orthology of the vigour-controlling LG5 QTL between apple and pear raises the possibility that the dwarfing locus Dw1 arose before the divergence of apple and pear, and might therefore be present in other Rosaceae species. CONCLUSION: We report the first QTLs associated with vigour control and flowering traits in pear rootstocks. Orthologous loci were found to control scion growth and precocity in apple and pear rootstocks. The application of our results may assist in the breeding process of a pear rootstock that confers both vigour control and precocity to the grafted scion cultivar.


Assuntos
Polimorfismo de Nucleotídeo Único , Pyrus/crescimento & desenvolvimento , Pyrus/genética , Locos de Características Quantitativas , Sintenia , Mapeamento Cromossômico , Marcadores Genéticos , Malus/genética , Malus/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pyrus/metabolismo
16.
Biochem J ; 435(3): 629-39, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21323638

RESUMO

The phytohormone gibberellin and the DELLA proteins act together to control key aspects of plant development. Gibberellin induces degradation of DELLA proteins by recruitment of an F-box protein using a molecular switch: a gibberellin-bound nuclear receptor interacts with the N-terminal domain of DELLA proteins, and this event primes the DELLA C-terminal domain for interaction with the F-box protein. However, the mechanism of signalling between the N- and C-terminal domains of DELLA proteins is unresolved. In the present study, we used in vivo and in vitro approaches to characterize di- and tri-partite interactions of the DELLA protein RGL1 (REPRESSOR OF GA1-3-LIKE 1) of Arabidopsis thaliana with the gibberellin receptor GID1A (GIBBERELLIC ACID-INSENSITIVE DWARF-1A) and the F-box protein SLY1 (SLEEPY1). Deuterium-exchange MS unequivocally showed that the entire N-terminal domain of RGL1 is disordered prior to interaction with the GID1A; furthermore, association/dissociation kinetics, determined by surface plasmon resonance, predicts a two-state conformational change of the RGL1 N-terminal domain upon interaction with GID1A. Additionally, competition assays with monoclonal antibodies revealed that contacts mediated by the short helix Asp-Glu-Leu-Leu of the hallmark DELLA motif are not essential for the GID1A-RGL1 N-terminal domain interaction. Finally, yeast two- and three-hybrid experiments determined that unabated communication between N- and C-terminal domains of RGL1 is required for recruitment of the F-box protein SLY1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Giberelinas/metabolismo , Cinética , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes
17.
Genesis ; 48(7): 416-23, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20213690

RESUMO

Plant lateral organs, such as leaves, have three primary axes of growth-proximal-distal, medial--lateral and adaxial-abaxial (dorsal-ventral). Although most leaves are planar, modified leaf forms, such as the bikeeled grass prophyll, can be found in nature. A detailed examination of normal prophyll development indicates that polarity is established differently in the keels than in other parts of the prophyll. Analysis of the maize HD-ZIPIII gene rolled leaf1 (rld1) suggests that altered expression patterns are responsible for keel outgrowth. Recessive mutations in the maize (Zea mays) KANADI (KAN) gene milkweed pod1 (mwp1), which promotes abaxial cell identity, strongly affect development of the prophyll and silks (fused carpels). The prophyll is reduced to two unfused midribs and the silks are narrow and misshapen. Our data indicate that the prophyll and other fused organs are particularly sensitive to disruptions in adaxial-abaxial polarity. In addition, lateral and proximal-distal growth of most lateral organs is reduced in the mwp1-R mutant, supporting a role for the adaxial-abaxial boundary in promoting growth along both axes. We propose that the adaxial-abaxial patterning mechanism has been co-opted during evolution to generate diverse organ morphologies.


Assuntos
Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polaridade Celular , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Microscopia Eletrônica de Varredura , Modelos Biológicos , Mutação/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Zea mays/anatomia & histologia , Zea mays/genética , Zea mays/crescimento & desenvolvimento
18.
Plant Cell ; 20(8): 2073-87, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18757553

RESUMO

Leaf primordia initiate from the shoot apical meristem with inherent polarity; the adaxial side faces the meristem, while the abaxial side faces away from the meristem. Adaxial/abaxial polarity is thought to be necessary for laminar growth of leaves, as mutants lacking either adaxial or abaxial cell types often develop radially symmetric lateral organs. The milkweed pod1 (mwp1) mutant of maize (Zea mays) has adaxialized sectors in the sheath, the proximal part of the leaf. Ectopic leaf flaps develop where adaxial and abaxial cell types juxtapose. Ectopic expression of the HD-ZIPIII gene rolled leaf1 (rld1) correlates with the adaxialized regions. Cloning of mwp1 showed that it encodes a KANADI transcription factor. Double mutants of mwp1-R with a microRNA-resistant allele of rld1, Rld1-N1990, show a synergistic phenotype with polarity defects in sheath and blade and a failure to differentiate vascular and photosynthetic cell types in the adaxialized sectors. The sectored phenotype and timing of the defect suggest that mwp1 is required late in leaf development to maintain abaxial cell fate. The phenotype of mwp1; Rld1 double mutants shows that both genes are also required early in leaf development to delineate leaf margins as well as to initiate vascular and photosynthetic tissues.


Assuntos
Folhas de Planta/genética , Proteínas de Plantas/genética , Zea mays/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/ultraestrutura , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/ultraestrutura , Homologia de Sequência de Aminoácidos , Zea mays/crescimento & desenvolvimento , Zea mays/ultraestrutura
19.
Protein Expr Purif ; 58(1): 168-74, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17949995

RESUMO

The DELLA proteins are involved in regulation of plant growth in response to phytohormonal signals such as GA, ethylene, and auxin. They have become one of most challenging and active area of research due to their fundamental roles in plant biology. Here, we describe the first successful expression of the N-terminal domains of DELLA proteins of Arabidopsis thaliana and Malus domestica in Escherichia coli system which will be used to produce monoclonal antibodies for profiling protein micro-arrays. Optimizations of the cloning, expression, and purification using specific tags have been discussed.


Assuntos
Escherichia coli/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Clonagem Molecular , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Vetores Genéticos , Malus/genética , Malus/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/isolamento & purificação , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/isolamento & purificação
20.
Ann Bot ; 100(3): 471-81, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17650513

RESUMO

BACKGROUND AND AIMS: In kiwifruit (Actinidia), the number of nodes per shoot is highly variable and is influenced by genotype and environmental conditions. To understand this developmental plasticity, three key processes were studied: organogenesis by the shoot apical meristem during shoot growth; expansion of phytomers; and shoot tip abortion. METHODS: Studies were made of organogenesis and shoot tip abortion using light and scanning electron microscopy. The effect of temperature on shoot growth cessation was investigated using temperature indices over the budbreak period, and patterns of shoot tip abortion were quantified using stochastic modelling. KEY RESULTS: All growing buds began organogenesis before budbreak. During shoot development, the number of phytomers initiated by the shoot apical meristem is correlated with the number of expanding phytomers and the mean internode length. Shoot tip abortion is preceded by growth cessation and is not brought about by the death of the shoot apical meristem, but occurs by tissue necrosis in the sub-apical zone. For most genotypes studied, the probability of shoot tip abortion is higher during expansion of the preformed part of the shoot. Lower temperatures during early growth result in a higher probability of shoot tip abortion. CONCLUSIONS: Organogenesis and shoot tip abortion are controlled independently. All buds have the potential to become long shoots. Conditions that increase early growth rate postpone shoot tip abortion.


Assuntos
Actinidia/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Actinidia/genética , Genótipo , Brotos de Planta/ultraestrutura , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...