Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Nat Commun ; 15(1): 5494, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944650

RESUMO

Real-time genomics through nanopore sequencing holds the promise of fast antibiotic resistance prediction directly in the clinical setting. However, concerns about the accuracy of genomics-based resistance predictions persist, particularly when compared to traditional, clinically established diagnostic methods. Here, we leverage the case of a multi-drug resistant Klebsiella pneumoniae infection to demonstrate how real-time genomics can enhance the accuracy of antibiotic resistance profiling in complex infection scenarios. Our results show that unlike established diagnostics, nanopore sequencing data analysis can accurately detect low-abundance plasmid-mediated resistance, which often remains undetected by conventional methods. This capability has direct implications for clinical practice, where such "hidden" resistance profiles can critically influence treatment decisions. Consequently, the rapid, in situ application of real-time genomics holds significant promise for improving clinical decision-making and patient outcomes.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Genômica , Infecções por Klebsiella , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Genômica/métodos , Humanos , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/diagnóstico , Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Sequenciamento por Nanoporos/métodos , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana
2.
J Antimicrob Chemother ; 79(7): 1529-1539, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38751093

RESUMO

OBJECTIVES: Comprehensive data on the genomic epidemiology of hospital-associated Klebsiella pneumoniae in Ghana are scarce. This study investigated the genomic diversity, antimicrobial resistance patterns, and clonal relationships of 103 clinical K. pneumoniae isolates from five tertiary hospitals in Southern Ghana-predominantly from paediatric patients aged under 5 years (67/103; 65%), with the majority collected from urine (32/103; 31%) and blood (25/103; 24%) cultures. METHODS: We generated hybrid Nanopore-Illumina assemblies and employed Pathogenwatch for genotyping via Kaptive [capsular (K) locus and lipopolysaccharide (O) antigens] and Kleborate (antimicrobial resistance and hypervirulence) and determined clonal relationships using core-genome MLST (cgMLST). RESULTS: Of 44 distinct STs detected, ST133 was the most common, comprising 23% of isolates (n = 23/103). KL116 (28/103; 27%) and O1 (66/103; 64%) were the most prevalent K-locus and O-antigen types. Single-linkage clustering highlighted the global spread of MDR clones such as ST15, ST307, ST17, ST11, ST101 and ST48, with minimal allele differences (1-5) from publicly available genomes worldwide. Conversely, 17 isolates constituted novel clonal groups and lacked close relatives among publicly available genomes, displaying unique genetic diversity within our study population. A significant proportion of isolates (88/103; 85%) carried resistance genes for ≥3 antibiotic classes, with the blaCTX-M-15 gene present in 78% (n = 80/103). Carbapenem resistance, predominantly due to blaOXA-181 and blaNDM-1 genes, was found in 10% (n = 10/103) of the isolates. CONCLUSIONS: Our findings reveal a complex genomic landscape of K. pneumoniae in Southern Ghana, underscoring the critical need for ongoing genomic surveillance to manage the substantial burden of antimicrobial resistance.


Assuntos
Antibacterianos , Variação Genética , Infecções por Klebsiella , Klebsiella pneumoniae , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Centros de Atenção Terciária/estatística & dados numéricos , Gana/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Antibacterianos/farmacologia , Pré-Escolar , Lactente , Testes de Sensibilidade Microbiana , Genótipo , Feminino , Masculino , Criança , Farmacorresistência Bacteriana Múltipla/genética , Infecção Hospitalar/microbiologia , Infecção Hospitalar/epidemiologia , Genoma Bacteriano , Farmacorresistência Bacteriana/genética , Adulto , Epidemiologia Molecular
4.
mBio ; 14(4): e0088223, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37255304

RESUMO

Enteroinvasive Escherichia coli (EIEC) and Shigella are closely related agents of bacillary dysentery. It is widely viewed that EIEC and Shigella species evolved from E. coli via independent acquisitions of a large virulence plasmid (pINV) encoding a type 3 secretion system (T3SS). Sequence Type (ST)99 O96:H19 E. coli is a novel clone of EIEC responsible for recent outbreaks in Europe and South America. Here, we use 92 whole genome sequences to reconstruct a dated phylogeny of ST99 E. coli, revealing distinct phylogenomic clusters of pINV-positive and -negative isolates. To study the impact of pINV acquisition on the virulence of this clone, we developed an EIEC-zebrafish infection model showing that virulence of ST99 EIEC is thermoregulated. Strikingly, zebrafish infection using a T3SS-deficient ST99 EIEC strain and the oldest available pINV-negative isolate reveals a separate, temperature-independent mechanism of virulence, indicating that ST99 non-EIEC strains were virulent before pINV acquisition. Taken together, these results suggest that an already pathogenic E. coli acquired pINV and that virulence of ST99 isolates became thermoregulated once pINV was acquired. IMPORTANCE Enteroinvasive Escherichia coli (EIEC) and Shigella are etiological agents of bacillary dysentery. Sequence Type (ST)99 is a clone of EIEC hypothesized to cause human disease by the recent acquisition of pINV, a large plasmid encoding a type 3 secretion system (T3SS) that confers the ability to invade human cells. Using Bayesian analysis and zebrafish larvae infection, we show that the virulence of ST99 EIEC isolates is highly dependent on temperature, while T3SS-deficient isolates encode a separate temperature-independent mechanism of virulence. These results indicate that ST99 non-EIEC isolates may have been virulent before pINV acquisition and highlight an important role of pINV acquisition in the dispersal of ST99 EIEC in humans, allowing wider dissemination across Europe and South America.


Assuntos
Disenteria Bacilar , Infecções por Escherichia coli , Shigella , Animais , Humanos , Escherichia coli , Virulência/genética , Peixe-Zebra , Sistemas de Secreção Tipo III/genética , Teorema de Bayes , Temperatura , Plasmídeos/genética , Shigella/genética
5.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745545

RESUMO

Genomic surveillance for SARS-CoV-2 lineages informs our understanding of possible future changes in transmissibility and vaccine efficacy and will be a high priority for public health for the foreseeable future. However, small changes in the frequency of one lineage over another are often difficult to interpret because surveillance samples are obtained using a variety of methods all of which are known to contain biases. As a case study, using an approach which is largely free of biases, we here describe lineage dynamics and phylogenetic relationships of the Alpha and Beta variant in England during the first 3 months of 2021 using sequences obtained from a random community sample who provided a throat and nose swab for rt-PCR as part of the REal-time Assessment of Community Transmission-1 (REACT-1) study. Overall, diversity decreased during the first quarter of 2021, with the Alpha variant (first identified in Kent) becoming predominant, driven by a reproduction number 0.3 higher than for the prior wild-type. During January, positive samples were more likely to be Alpha in those aged 18 to 54 years old. Although individuals infected with the Alpha variant were no more likely to report one or more classic COVID-19 symptoms compared to those infected with wild-type, they were more likely to be antibody-positive 6 weeks after infection. Further, viral load was higher in those infected with the Alpha variant as measured by cycle threshold (Ct) values. The presence of infections with non-imported Beta variant (first identified in South Africa) during January, but not during February or March, suggests initial establishment in the community followed by fade-out. However, this occurred during a period of stringent social distancing. These results highlight how sequence data from representative community surveys such as REACT-1 can augment routine genomic surveillance during periods of lineage diversity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , SARS-CoV-2/genética , Filogenia , Inglaterra/epidemiologia
6.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752781

RESUMO

Oxford Nanopore Technologies (ONT) sequencing has rich potential for genomic epidemiology and public health investigations of bacterial pathogens, particularly in low-resource settings and at the point of care, due to its portability and affordability. However, low base-call accuracy has limited the reliability of ONT data for critical tasks such as antimicrobial resistance (AMR) and virulence gene detection and typing, serotype prediction, and cluster identification. Thus, Illumina sequencing remains the standard for genomic surveillance despite higher capital and running costs. We tested the accuracy of ONT-only assemblies for common applied bacterial genomics tasks (genotyping and cluster detection, implemented via Kleborate, Kaptive and Pathogenwatch), using data from 54 unique Klebsiella pneumoniae isolates. ONT reads generated via MinION with R9.4.1 flowcells were basecalled using three alternative models [Fast, High-accuracy (HAC) and Super-accuracy (SUP), available within ONT's Guppy software], assembled with Flye and polished using Medaka. Accuracy of typing using ONT-only assemblies was compared with that of Illumina-only and hybrid ONT+Illumina assemblies, constructed from the same isolates as reference standards. The most resource-intensive ONT-assembly approach (SUP basecalling, with or without Medaka polishing) performed best, yielding reliable capsule (K) type calls for all strains (100 % exact or best matching locus), reliable multi-locus sequence type (MLST) assignment (98.3 % exact match or single-locus variants), and good detection of acquired AMR genes and mutations (88-100 % correct identification across the various drug classes). Distance-based trees generated from SUP+Medaka assemblies accurately reflected overall genetic relationships between isolates. The definition of outbreak clusters from ONT-only assemblies was problematic due to inflation of SNP counts by high base-call errors. However, ONT data could be reliably used to 'rule out' isolates of distinct lineages from suspected transmission clusters. HAC basecalling + Medaka polishing performed similarly to SUP basecalling without polishing. Therefore, we recommend investing compute resources into basecalling (SUP model), wherever compute resources and time allow, and note that polishing is also worthwhile for improved performance. Overall, our results show that MLST, K type and AMR determinants can be reliably identified with ONT-only R9.4.1 flowcell data. However, cluster detection remains challenging with this technology.


Assuntos
Klebsiella pneumoniae , Nanoporos , Genômica , Klebsiella pneumoniae/genética , Tipagem de Sequências Multilocus , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma/métodos , Farmacorresistência Bacteriana
7.
PeerJ ; 10: e12935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251780

RESUMO

The genus Escherichia has been extensively studied and it is known to encompass a range of commensal and pathogenic bacteria that primarily inhabit the gastrointestinal tracts of warm-blooded vertebrates. However, the presence of E. coli as a model organism and potential pathogen has diverted attention away from commensal strains and other species in the genus. To investigate the diversity of Escherichia in healthy chickens, we collected fecal samples from antibiotic-free Lohmann Brown layer hens and determined the genome sequences of 100 isolates, 81 of which were indistinguishable at the HC0 level of the Hierarchical Clustering of Core Genome Multi-Locus Sequence Typing scheme. Despite initial selection on CHROMagar Orientation medium, which is considered selective for E. coli, in silico phylotyping and core genome single nucleotide polymorphism analysis revealed the presence of at least one representative of all major clades of Escherichia, except for E. albertii, Shigella, and E. coli phylogroup B2 and cryptic clade I. The most frequent phylogenomic groups were E. coli phylogroups A and B1 and E. ruysiae (clades III and IV). We compiled a collection of reference strains isolated from avian sources (predominantly chicken), representing every Escherichia phylogroup and species, and used it to confirm the phylogeny and diversity of our isolates. Overall, the isolates carried low numbers of the virulence and antibiotic resistance genes typically seen in avian pathogenic E. coli. Notably, the clades not recovered are ones that have been most strongly associated with virulence by other studies.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Feminino , Escherichia coli/genética , Galinhas/genética , Infecções por Escherichia coli/veterinária , Tipagem de Sequências Multilocus , Fatores de Virulência/genética , Genômica
8.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35119356

RESUMO

The transmission dynamics of Streptococcus pneumoniae in sub-Saharan Africa are poorly understood due to a lack of adequate epidemiological and genomic data. Here we leverage a longitudinal cohort from 21 neighbouring villages in rural Africa to study how closely related strains of S. pneumoniae are shared among infants. We analysed 1074 pneumococcal genomes isolated from 102 infants from 21 villages. Strains were designated for unique serotype and sequence-type combinations, and we arbitrarily defined strain sharing where the pairwise genetic distance between strains could be accounted for by the mean within host intra-strain diversity. We used non-parametric statistical tests to assess the role of spatial distance and prolonged carriage on strain sharing using a logistic regression model. We recorded 458 carriage episodes including 318 (69.4 %) where the carried strain was shared with at least one other infant. The odds of strain sharing varied significantly across villages (χ2=47.5, df=21, P-value <0.001). Infants in close proximity to each other were more likely to be involved in strain sharing, but we also show a considerable amount of strain sharing across longer distances. Close geographic proximity (<5 km) between shared strains was associated with a significantly lower pairwise SNP distance compared to strains shared over longer distances (P-value <0.005). Sustained carriage of a shared strain among the infants was significantly more likely to occur if they resided in villages within a 5 km radius of each other (P-value <0.005, OR 3.7). Conversely, where both infants were transiently colonized by the shared strain, they were more likely to reside in villages separated by over 15 km (P-value <0.05, OR 1.5). PCV7 serotypes were rare (13.5 %) and were significantly less likely to be shared (P-value <0.001, OR -1.07). Strain sharing was more likely to occur over short geographical distances, especially where accompanied by sustained colonization. Our results show that strain sharing is a useful proxy for studying transmission dynamics in an under-sampled population with limited genomic data. This article contains data hosted by Microreact.


Assuntos
Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/transmissão , População Rural , Streptococcus pneumoniae/genética , África/epidemiologia , Humanos , Lactente , Microbiota , Nasofaringe/microbiologia , Infecções Pneumocócicas/epidemiologia , Sorogrupo , Streptococcus pneumoniae/classificação , Sequenciamento Completo do Genoma
9.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35134909

RESUMO

Escherichia coli has a rich history as biology's 'rock star', driving advances across many fields. In the wild, E. coli resides innocuously in the gut of humans and animals but is also a versatile pathogen commonly associated with intestinal and extraintestinal infections and antimicrobial resistance-including large foodborne outbreaks such as the one that swept across Europe in 2011, killing 54 individuals and causing approximately 4000 infections and 900 cases of haemolytic uraemic syndrome. Given that most E. coli are harmless gut colonizers, an important ecological question plaguing microbiologists is what makes E. coli an occasionally devastating pathogen? To address this question requires an enhanced understanding of the ecology of the organism as a commensal. Here, we review how our knowledge of the ecology and within-host diversity of this organism in the vertebrate gut has progressed in the 137 years since E. coli was first described. We also review current approaches to the study of within-host bacterial diversity. In closing, we discuss some of the outstanding questions yet to be addressed and prospects for future research.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Bactérias , Infecções por Escherichia coli/microbiologia , Simbiose , Vertebrados
10.
Microb Genom ; 7(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34846280

RESUMO

The SARS-CoV-2 pandemic continues to expand globally, with case numbers rising in many areas of the world, including the Indian sub-continent. Pakistan has one of the world's largest populations, of over 200 million people and is experiencing a severe third wave of infections caused by SARS-CoV-2 that began in March 2021. In Pakistan, during the third wave until now only 12 SARS-CoV-2 genomes have been collected and among these nine are from Islamabad. This highlights the need for more genome sequencing to allow surveillance of variants in circulation. In fact, more genomes are available among travellers with a travel history from Pakistan, than from within the country itself. We thus aimed to provide a snapshot assessment of circulating lineages in Lahore and surrounding areas with a combined population of 11.1 million. Within a week of April 2021, 102 samples were sequenced. The samples were randomly collected from two hospitals with a diagnostic PCR cutoff value of less than 25 cycles. Analysis of the lineages shows that the Alpha variant of concern (first identified in the UK) dominates, accounting for 97.9 % (97/99) of cases, with the Beta variant of concern (first identified in South Africa) accounting for 2.0 % (2/99) of cases. No other lineages were observed. In depth analysis of the Alpha lineages indicated multiple separate introductions and subsequent establishment within the region. Eight samples were identical to genomes observed in Europe (seven UK, one Switzerland), indicating recent transmission. Genomes of other samples show evidence that these have evolved, indicating sustained transmission over a period of time either within Pakistan or other countries with low-density genome sequencing. Vaccines remain effective against Alpha, however, the low level of Beta against which some vaccines are less effective demonstrates the requirement for continued prospective genomic surveillance.


Assuntos
COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Feminino , Genoma Viral , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão/epidemiologia , Pandemias , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Adulto Jovem
11.
Microb Genom ; 7(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34328412

RESUMO

Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Vacina Pneumocócica Conjugada Heptavalente/imunologia , Meningite Pneumocócica/epidemiologia , Vacinas Pneumocócicas/imunologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Adolescente , África Ocidental/epidemiologia , Antituberculosos/farmacologia , Criança , Pré-Escolar , Genoma Bacteriano/genética , Humanos , Lactente , Recém-Nascido , Meningite Pneumocócica/imunologia , Meningite Pneumocócica/prevenção & controle , Testes de Sensibilidade Microbiana , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/isolamento & purificação , Sequenciamento Completo do Genoma
12.
PeerJ ; 9: e10941, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868800

RESUMO

BACKGROUND: The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. RESULTS: We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. CONCLUSIONS: Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.

13.
Vaccines (Basel) ; 9(2)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557233

RESUMO

Molecular epidemiological data on Group A Streptococcus (GAS) infection in Africa is scarce. We characterized the emm-types and emm-clusters of 433 stored clinical GAS isolates from The Gambia collected between 2004 and 2018. To reduce the potential for strain mistyping, we used a newly published primer for emm-typing. There was considerable strain diversity, highlighting the need for vaccine development offering broad strain protection.

14.
PeerJ ; 9: e10572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33505796

RESUMO

Little is known about the genomic diversity of Escherichia coli in healthy children from sub-Saharan Africa, even though this is pertinent to understanding bacterial evolution and ecology and their role in infection. We isolated and whole-genome sequenced up to five colonies of faecal E. coli from 66 asymptomatic children aged three-to-five years in rural Gambia (n = 88 isolates from 21 positive stools). We identified 56 genotypes, with an average of 2.7 genotypes per host. These were spread over 37 seven-allele sequence types and the E. coli phylogroups A, B1, B2, C, D, E, F and Escherichia cryptic clade I. Immigration events accounted for three-quarters of the diversity within our study population, while one-quarter of variants appeared to have arisen from within-host evolution. Several isolates encode putative virulence factors commonly found in Enteropathogenic and Enteroaggregative E. coli, and 53% of the isolates encode resistance to three or more classes of antimicrobials. Thus, resident E. coli in these children may constitute reservoirs of virulence- and resistance-associated genes. Moreover, several study strains were closely related to isolates that caused disease in humans or originated from livestock. Our results suggest that within-host evolution plays a minor role in the generation of diversity compared to independent immigration and the establishment of strains among our study population. Also, this study adds significantly to the number of commensal E. coli genomes, a group that has been traditionally underrepresented in the sequencing of this species.

15.
Microb Genom ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33253086

RESUMO

Chickens and guinea fowl are commonly reared in Gambian homes as affordable sources of protein. Using standard microbiological techniques, we obtained 68 caecal isolates of Escherichia coli from 10 chickens and 9 guinea fowl in rural Gambia. After Illumina whole-genome sequencing, 28 sequence types were detected in the isolates (4 of them novel), of which ST155 was the most common (22/68, 32 %). These strains span four of the eight main phylogroups of E. coli, with phylogroups B1 and A being most prevalent. Nearly a third of the isolates harboured at least one antimicrobial resistance gene, while most of the ST155 isolates (14/22, 64 %) encoded resistance to ≥3 classes of clinically relevant antibiotics, as well as putative virulence factors, suggesting pathogenic potential in humans. Furthermore, hierarchical clustering revealed that several Gambian poultry strains were closely related to isolates from humans. Although the ST155 lineage is common in poultry from Africa and South America, the Gambian ST155 isolates belong to a unique cgMLST cluster comprising closely related (38-39 alleles differences) isolates from poultry and livestock from sub-Saharan Africa - suggesting that strains can be exchanged between poultry and livestock in this setting. Continued surveillance of E. coli and other potential pathogens in rural backyard poultry from sub-Saharan Africa is warranted.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli/classificação , Galliformes/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Animais , Galinhas/microbiologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Gâmbia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Tipagem de Sequências Multilocus , Filogenia , Fatores de Virulência/genética
16.
Microb Genom ; 6(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32924917

RESUMO

Increasing contact between humans and non-human primates provides an opportunity for the transfer of potential pathogens or antimicrobial resistance between host species. We have investigated genomic diversity and antimicrobial resistance in Escherichia coli isolates from four species of non-human primates in the Gambia: Papio papio (n=22), Chlorocebus sabaeus (n=14), Piliocolobus badius (n=6) and Erythrocebus patas (n=1). We performed Illumina whole-genome sequencing on 101 isolates from 43 stools, followed by nanopore long-read sequencing on 11 isolates. We identified 43 sequence types (STs) by the Achtman scheme (ten of which are novel), spanning five of the eight known phylogroups of E. coli. The majority of simian isolates belong to phylogroup B2 - characterized by strains that cause human extraintestinal infections - and encode factors associated with extraintestinal disease. A subset of the B2 strains (ST73, ST681 and ST127) carry the pks genomic island, which encodes colibactin, a genotoxin associated with colorectal cancer. We found little antimicrobial resistance and only one example of multi-drug resistance among the simian isolates. Hierarchical clustering showed that simian isolates from ST442 and ST349 are closely related to isolates recovered from human clinical cases (differences in 50 and 7 alleles, respectively), suggesting recent exchange between the two host species. Conversely, simian isolates from ST73, ST681 and ST127 were distinct from human isolates, while five simian isolates belong to unique core-genome ST complexes - indicating novel diversity specific to the primate niche. Our results are of planetary health importance, considering the increasing contact between humans and wild non-human primates.


Assuntos
Farmacorresistência Bacteriana , Escherichia coli/classificação , Primatas/microbiologia , Sequenciamento Completo do Genoma/métodos , Animais , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/genética , Fezes/microbiologia , Gâmbia , Ilhas Genômicas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Fatores de Virulência/genética
17.
Nat Commun ; 11(1): 3442, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651390

RESUMO

Genomic evolution, transmission and pathogenesis of Streptococcus pneumoniae, an opportunistic human-adapted pathogen, is driven principally by nasopharyngeal carriage. However, little is known about genomic changes during natural colonisation. Here, we use whole-genome sequencing to investigate within-host microevolution of naturally carried pneumococci in ninety-eight infants intensively sampled sequentially from birth until twelve months in a high-carriage African setting. We show that neutral evolution and nucleotide substitution rates up to forty-fold faster than observed over longer timescales in S. pneumoniae and other bacteria drives high within-host pneumococcal genetic diversity. Highly divergent co-existing strain variants emerge during colonisation episodes through real-time intra-host homologous recombination while the rest are co-transmitted or acquired independently during multiple colonisation episodes. Genic and intergenic parallel evolution occur particularly in antibiotic resistance, immune evasion and epithelial adhesion genes. Our findings suggest that within-host microevolution is rapid and adaptive during natural colonisation.


Assuntos
Infecções Pneumocócicas/genética , Streptococcus pneumoniae/genética , Evolução Molecular , Genética , Genoma Bacteriano/genética , Humanos , Sequenciamento Completo do Genoma
18.
Infect Dis (Lond) ; 52(9): 644-650, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32516021

RESUMO

Objective:Acinetobacter baumannii infections are rarely diagnosed in many hospitals in Nigeria due to a lack of capacity for the identification of the organism in spite of the clinical significance of this opportunistic nosocomial organism. We assembled a panel of presumptive isolates of A. baumannii from tertiary hospitals in Nigeria and analysed mechanisms of resistance phenotypically and by whole genome sequencing.Materials and methods: Twenty-one clinical isolates of A. baumannii identified using standard microbiological tests were tested for susceptibility to a panel of antibiotics by the agar dilution method, and production of ESBLs using phenotypic tests. Whole genome sequencing and comparative genomic analysis were used to determine the antimicrobial resistance genes, strain types, phylogenetic relationships and genetic context of resistance genes.Results: The MIC50 and MIC90 of most antibiotics were very high with no difference between MIC50 and MIC90 values apart for amikacin, meropenem and colistin where MIC50 and MIC90 ranged between 1-4 µg/ml and 64->64 µg/ml, respectively. Multiple resistance genes were detected in most of the isolates including blaNDM-1, various blaOXA-51 family alleles and blaOXA-23. Interestingly, blaNDM-1 carriage did not always result in phenotypic carbapenem resistance. Whole genome alignments typing showed strains belonged to three major clades. Strains within these clades had different resistance genes and resistance patterns.Conclusions: This report shows a high level of resistance to important antibiotics and carbapenem resistance in A. baumannii in Nigeria. We hope this work will serve as a reference for future study in the sub-Saharan region of Africa.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Proteínas de Bactérias/farmacologia , beta-Lactamases/metabolismo , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Nigéria/epidemiologia , Filogenia , Sequenciamento Completo do Genoma , beta-Lactamases/genética , beta-Lactamases/farmacologia
19.
Front Pediatr ; 8: 587730, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33489998

RESUMO

Streptococcus pneumoniae (the pneumococcus) carriage precedes invasive disease and influences population-wide strain dynamics, but limited data exist on temporal carriage patterns of serotypes due to the prohibitive costs of longitudinal studies. Here, we report carriage prevalence, clearance and acquisition rates of pneumococcal serotypes sampled from newborn infants bi-weekly from weeks 1 to 27, and then bi-monthly from weeks 35 to 52 in the Gambia. We used sweep latex agglutination and whole genome sequencing to serotype the isolates. We show rapid pneumococcal acquisition with nearly 31% of the infants colonized by the end of first week after birth and quickly exceeding 95% after 2 months. Co-colonization with multiple serotypes was consistently observed in over 40% of the infants at each sampling point during the first year of life. Overall, the mean acquisition time and carriage duration regardless of serotype was 38 and 24 days, respectively, but varied considerably between serotypes comparable to observations from other regions. Our data will inform disease prevention and control measures including providing baseline data for parameterising infectious disease mathematical models including those assessing the impact of clinical interventions such as pneumococcal conjugate vaccines.

20.
Microb Genom ; 5(9)2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31526447

RESUMO

Among long-stay critically ill patients in the adult intensive care unit (ICU), there are often marked changes in the complexity of the gut microbiota. However, it remains unclear whether such patients might benefit from enhanced surveillance or from interventions targeting the gut microbiota or the pathogens therein. We therefore undertook a prospective observational study of 24 ICU patients, in which serial faecal samples were subjected to shotgun metagenomic sequencing, phylogenetic profiling and microbial genome analyses. Two-thirds of the patients experienced a marked drop in gut microbial diversity (to an inverse Simpson's index of <4) at some stage during their stay in the ICU, often accompanied by the absence or loss of potentially beneficial bacteria. Intravenous administration of the broad-spectrum antimicrobial agent meropenem was significantly associated with loss of gut microbial diversity, but the administration of other antibiotics, including piperacillin/tazobactam, failed to trigger statistically detectable changes in microbial diversity. In three-quarters of ICU patients, we documented episodes of gut domination by pathogenic strains, with evidence of cryptic nosocomial transmission of Enterococcus faecium. In some patients, we also saw an increase in the relative abundance of apparent commensal organisms in the gut microbiome, including the archaeal species Methanobrevibacter smithii. In conclusion, we have documented a dramatic absence of microbial diversity and pathogen domination of the gut microbiota in a high proportion of critically ill patients using shotgun metagenomics.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Estado Terminal , Enterococcus faecium/isolamento & purificação , Enterococcus faecium/fisiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Unidades de Terapia Intensiva , Masculino , Meropeném/farmacologia , Meropeném/uso terapêutico , Metagenômica , Pessoa de Meia-Idade , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...