Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 56(15): 8865-8877, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28715225

RESUMO

Lithium garnet oxides are considered as very promising solid electrolyte candidates for all-solid-state lithium ion batteries (SSLiBs). In this work, we present a cubic garnet-type Li5+2xLa3Ta2-xSmxO12 (0 ≤ x ≤ 0.55) system as a potential electrolyte for SSLiBs. Powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) were employed to investigate the structural stability of Li5+2xLa3Ta2-xSmxO12. The results from PXRD and SEM suggested structural and morphological transformation as a function of dopant concentration. In addition to Li-ion transport in Li5+2xLa3Ta2-xSmxO12, the dielectric properties were also investigated in the light of electron energy loss functions, which showed some surface energy loss and negligible volume energy loss for the studied garnets. Surface and volume energy loss functions of a mixed conducting LiCoO2 was studied for comparison. The long-term chemical stability of one of members, Li5.3La3Ta1.85Sm0.15O12, was performed on aged sample using PXRD, SEM, and thermogravimetric analysis.

2.
Dalton Trans ; 46(25): 8304-8305, 2017 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-28653716

RESUMO

Correction for 'Synthesis and characterization of novel Li-stuffed garnet-like Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55): structure-property relationships' by Dalia M. Abdel Basset, et al., Dalton Trans., 2017, 46, 933-946.

3.
Dalton Trans ; 46(3): 933-946, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009888

RESUMO

In this article, we report the preparation and characterization of novel Li-stuffed garnets Li5+2xLa3Ta2-xGdxO12 (0 ≤ x ≤ 0.55) for all-solid-state Li ion batteries. The conventional solid-state method was used to prepare Li5La3Ta2O12 in air at 1200 °C and Li5+2xLa3Ta2-xGdxO12 at 1150 °C. Rietveld refinements for the powder X-ray diffraction (PXRD) patterns confirmed the formation of a cubic garnet-like structure (space group Ia3[combining macron]d) with cell constant increased from 12.8176(4) Å (x = 0) to 12.9372(2) Å (x = 0.55). However, small amounts of second phases were observed for higher Gd-doped samples. Scanning electron microscopy revealed that Li5.7La3Ta1.65Gd0.35O12 exhibits the highest density among all investigated samples in this study. The AC impedance spectroscopy data of the samples have been analyzed in relation to ionic conductivity, dielectric constants, and loss tangent. Among the investigated electrolytes, the Li5.7La3Ta1.65Gd0.35O12 composition demonstrated the highest bulk ionic conductivity of 8.18 × 10-5 S cm-1 at 25 °C, which is significantly higher than that of the parent garnet Li5La3Ta2O12 (1.65 × 10-5 S cm-1 at 25 °C). The appearance of a relaxation peak in the loss tangent plots for all samples seems to be due to the dipolar rotations of Li+ ions in Li-stuffed garnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...