Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(15): 1279-1288, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353541

RESUMO

Through this paper, the authors propose using the quantum cluster equilibrium (QCE) theory to reinvestigate ammonia clusters in the liquid phase. The ammonia clusters from size monomer to hexadecamer were considered to simulate the liquid ammonia in this approach. The clusterset used to model the liquid ammonia is an ensemble of different structures of ammonia clusters. After studious research of the representative configurations of ammonia clusters through the cluster research program ABCluster, the configurations have been optimized at the MN15/6-31++G(d,p) level of theory. These optimizations lead to geometries and frequencies as inputs for the Peacemaker code. The QCE study of this molecular system permits us to get the liquid phase populations in a temperature range of 190-260 K, covering the temperatures from the melting point to the boiling point. The results show that the population of liquid ammonia comprises mainly the ammonia hexadecamer followed by pentadecamer, tetradecamer, and tridecamer. We noted that the small-sized ammonia clusters do not contribute to the population of liquid ammonia. In addition, the thermodynamic properties, such as heat of vaporization, heat capacity, entropy, enthalpy, and free energies, obtained by the QCE theory have been compared to the experiment given some relatively good agreements in the gas phase and show considerable discrepancies in liquid phase except the density. Finally, based on the predicted population, we calculated the infrared spectrum of liquid ammonia at 215 K temperature. It comes out that the calculated infrared spectrum qualitatively agrees with the experiment.

2.
J Theor Biol ; 579: 111702, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38096977

RESUMO

In this paper, we study the nonlinear dynamics of the MARCKS protein between cytosol and cytoplasmic membrane through the modulational instability phenomenon. The reaction-diffusion generic model used here is firstly transformed into a cubic complex Ginzburg-Landau equation. Then, modulational instability (MI) is carried out in order to derive the MI criteria. We find the domains of some parameter space where nonlinear patterns are expected in the model. The analytical results on the MI growth rate predict that phosphorylation and binding rates affect MARCKS dynamics in opposite way: while the phosphorylation rate tends to support highly localized structures of MARCKS, the binding rate in turn tends to slow down such features. On the other hand, self-diffusion process always amplifies the MI phenomenon. These predictions are confirmed by numerical simulations. As a result, the cyclic transport of MARCKS protein from membrane to cytosol may be done by means of multisolitons-like patterns.


Assuntos
Dinâmica não Linear , Substrato Quinase C Rico em Alanina Miristoilada , Membrana Celular , Difusão , Fosforilação
3.
Sci Rep ; 10(1): 15087, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934327

RESUMO

Based on the improved FitzHugh-Nagumo myocardial model driven by a constant external current, the effect of temperature fluctuation in a network of electrically coupled myocardial cells are investigated through analytical and numerical computations. Through the technique of multiple scale expansion, we successfully reduced the complex nonlinear system of equations to a more tractable and solvable nonlinear amplitude equation on which the analysis of linear stability is performed. Interestingly from this analysis, a plot of critical amplitude of action potential versus wave number revealed the growth rate of modulational instability (MI) is an increasing function of the thermoelectric couplings; [Formula: see text] and [Formula: see text], under fixed conditions of nonlinear electrical couplings. In order to verify our analytical predictions through the study the long-time evolution of the modulated cardiac impulses, numerical computation is finally carried out. Numerical experiment revealed the existence of localized coherent structures with some recognized features of synchronization. Through the mechanism of MI, changes in thermoelectrical couplings promote wave localization and mode transition in electrical activities in the cell lattice. Results could provide new insights in understanding the underlying mechanism of the manifestation of sudden heart disorder subjected to heavily temperature fluctuation.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Simulação por Computador , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...