Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 34(2): 689-702, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17388187

RESUMO

We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The PET camera under development has two 10x 15 cm(2) plates that are constructed from arrays of I X 1 X 3 mm(3) LSO crystals coupled to novel ultra-thin (<200 Am) silicon position-sensitive avalanche photodiodes (PSAPD). In this design the photodetectors are configured "edge-on" with respect to incoming photons which encounter a minimum of 2 cm thick of LSO with directly measured photon interaction depth. Simulations predict that this camera will have 10-15% photon sensitivity, for an 8-4 cm panel separation. Detector measurements show approximately 1 mm(3) intrinsic spatial resolution, <12% energy resolution, and approximately 2 ns coincidence time resolution. By performing simulated dual-panel PET studies using a phantom comprising active breast, heart, and torso tissue, count performance was studied as a function of coincident time and energy windows. We also studied visualization of hot spheres of 2.5-4.0 mm diameter and various locations within the simulated breast tissue for 1 X 1 X 3 mm(3), 2 x 2 x 10 mm(3), 3 x 3 x 30 mm(3), and 4 X 4 X 20 mm(3) LSO crystal resolutions and different panel separations. Images were reconstructed by focal plane tomography with attenuation and normalization corrections applied. Simulation results indicate that with an activity concentration ratio of tumor:breast:heart:torso of 10:1:10:1 and 30 s of acquisition time, only the dual-plate PET camera comprising 1 X 1 X 3 mm(3) crystals could resolve 2.5 mm diameter spheres with an average peak-to-valley ratio of 1.3.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Câmaras gama , Aumento da Imagem/instrumentação , Modelos Biológicos , Tomografia por Emissão de Pósitrons/instrumentação , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Interpretação de Imagem Assistida por Computador/instrumentação , Interpretação de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
2.
Phys Med ; 21 Suppl 1: 28-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17645990

RESUMO

We are developing a high resolution, high sensitivity PET camera dedicated to breast cancer imaging. We are studying two novel detector technologies for this imaging system: a scintillation detector comprising layers of small lutetium oxyorthosilicate (LSO) crystals coupled to new position sensitive avalanche photodiodes (PSAPDs), and a pure semiconductor detector comprising cadmium zinc telluride (CZT) crystal slabs with thin anode and cathode strips deposited in orthogonal directions on either side of each slab. Both detectors achieve 1 mm spatial resolution with 3-5 mm directly measured photon interaction depth resolution, which promotes uniform reconstructed spatial resolution throughout a compact, breast-size field of view. Both detector types also achieve outstanding energy resolution (<3% and <12%, respectively for LSO-PSAPD and CZT at 511 keV). This paper studies the effects that this excellent energy resolution has on the expected system performance. Results indicate the importance that high energy resolution and narrow energy window settings have in reducing background random as well as scatter coincidences without compromising statistical quality of the dedicated breast PET data. Simulations predict that using either detector type the excellent performance and novel arrangement of these detectors proposed for the system facilitate approximately 20% instrument sensitivity at the system center and a peak noise-equivalent count rate of >4 kcps for 200 microCi in a simulated breast phantom.

3.
Phys Med ; 21 Suppl 1: 64-7, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17645997

RESUMO

We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals. Previous investigations of detector geometries with Monte Carlo indicated that one of the largest impacts on sensitivity is local scintillation crystal density when considering systems having the same average scintillation crystal densities (same crystal packing fraction and system solid-angle coverage). Our results show the system has very good scatter and randoms rejection at clinical activity ranges ( approximately 200 muCi).

4.
Phys Med ; 21 Suppl 1: 94-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17646005

RESUMO

We are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design. The noise equivalent counting (NEC) rate, together with the true, scatter, and random counting rates were simulated at different time and energy windows. Focal plane tomography (FPT) was used for visualizing the tumors at different depths between the two detector panels. Attenuation and uniformity corrections were applied to images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA