Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Neuroimmunol Neuroinflamm ; 4(1): e306, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27957507

RESUMO

OBJECTIVE: To describe newly identified autoantibodies associated with cerebellar disorders. DESIGN/METHODS: We first screened the sera of 15 patients with cerebellar ataxia, without any known associated autoantibodies, with immunocytochemistry on mouse brain. After characterization and validation of a newly identified antibody, 85 additional patients with suspected autoimmune cerebellar disease were screened using a cell-based assay. RESULTS: Immunoglobulin G from one of the first 15 patients demonstrated a distinct staining pattern on Purkinje neurons. This autoantibody, as characterized further by immunoprecipitation and mass spectrometry, was binding inositol 1,4,5-triphosphate receptor 1 (IP3R1), an intracellular channel that mediates the release of Ca2+ from intracellular stores. Anti-IP3R1 specificity was then validated with a cell-based assay. On this basis, screening of 85 other patients with cerebellar disease revealed 2 additional IP3R1-positive patients. All 3 patients presented with cerebellar ataxia; the first was eventually diagnosed with primary progressive multiple sclerosis, the second had a homozygous CAG insertion at the gene TBP, and the third was thought to have a neurodegenerative disease. CONCLUSIONS: We independently identified an autoantibody against IP3R1, a protein highly expressed in Purkinje neurons, confirming an earlier report. Because a mouse knockout model for IP3R1 exhibits ataxia and epilepsy, this autoantibody may have a functional role. The heterogeneity of the antibody-positive patients suggests that this antibody may either have a direct involvement in disease pathogenesis or it is a surrogate marker secondary to cerebellar injury. Anti-IP3R1 antibodies should be further explored in various ataxic and epileptic syndromes as they may denote a marker of response to immunotherapies.

2.
J Neuroimmunol ; 289: 8-11, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26616866

RESUMO

Anti-aquaporin-4 autoantibodies are specific for the neuromyelitis optica spectrum disorders (NMOSD) and they have also been described in patients with systemic lupus erythematosus (SLE) with neurological signs consistent with NMOSD. Our objective was to test for the presence and pathogenicity of anti-AQP4 antibodies in SLE patients without neurological disease. Sera from 89 non-CNS-SLE patients were screened for anti-AQP4 autoantibodies. Two of the 89 patients were positive. Archived samples dating back 11 years were also positive. A brain and spinal cord MRI did not reveal any NMOSD-compatible lesions. An in vitro cytotoxicity assay showed that either sera or purified IgG from these patients induced a complement-mediated damage in cultured astrocytes comparable to antibodies obtained from typical NMO patients. We conclude that AQP4-antibodies can be present in SLE patients and persist for many years, without concurrent clinical or radiological NMOSD signs. It is unclear why the anti-AQP4 antibodies did not induce CNS disease.


Assuntos
Aquaporina 4/imunologia , Astrócitos/efeitos dos fármacos , Autoanticorpos/sangue , Autoanticorpos/toxicidade , Lúpus Eritematoso Sistêmico/sangue , Lúpus Eritematoso Sistêmico/patologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Estatísticas não Paramétricas , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...