Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400382, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819848

RESUMO

Imidazole-1-sulfonyl and -sulfonate (imidazylate) are widely used in synthetic chemistry as nucleofuges for diazotransfer, nucleophilic substitution, and cross-coupling reactions. The utility of these reagents for protein bioconjugation, in contrast, have not been comprehensively explored and important considering the prevalence of imidazoles in biomolecules and drugs. Here, we synthesized a series of alkyne-modified sulfonyl- and sulfonate-imidazole probes to investigate the utility of this electrophile for protein binding. Alkylation of the distal nitrogen activated the nucleofuge capability of the imidazole to produce sulfonyl-imidazolium electrophiles that were highly reactive but unstable for biological applications. In contrast, arylsulfonyl imidazoles functioned as a tempered electrophile for assessing ligandability of select tyrosine and lysine sites in cell proteomes and when mated to a recognition element could produce targeted covalent inhibitors with reduced off-target activity. In summary, imidazole nucleofuges show balanced stability and tunability to produce sulfone-based electrophiles that bind functional tyrosine and lysine sites in the proteome.

2.
Nat Commun ; 14(1): 6282, 2023 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805600

RESUMO

Proteomic methods for RNA interactome capture (RIC) rely principally on crosslinking native or labeled cellular RNA to enrich and investigate RNA-binding protein (RBP) composition and function in cells. The ability to measure RBP activity at individual binding sites by RIC, however, has been more challenging due to the heterogenous nature of peptide adducts derived from the RNA-protein crosslinked site. Here, we present an orthogonal strategy that utilizes clickable electrophilic purines to directly quantify protein-RNA interactions on proteins through photoaffinity competition with 4-thiouridine (4SU)-labeled RNA in cells. Our photo-activatable-competition and chemoproteomic enrichment (PACCE) method facilitated detection of >5500 cysteine sites across ~3000 proteins displaying RNA-sensitive alterations in probe binding. Importantly, PACCE enabled functional profiling of canonical RNA-binding domains as well as discovery of moonlighting RNA binding activity in the human proteome. Collectively, we present a chemoproteomic platform for global quantification of protein-RNA binding activity in living cells.


Assuntos
Proteômica , RNA , Humanos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sítios de Ligação , Peptídeos/metabolismo
3.
Biochim Biophys Acta Bioenerg ; 1864(2): 148962, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822493

RESUMO

F1Fo ATP synthase is a ubiquitous molecular motor that utilizes a rotary mechanism to synthesize adenosine triphosphate (ATP), the fundamental energy currency of life. The membrane-embedded Fo motor converts the electrochemical gradient of protons into rotation, which is then used to drive the conformational changes in the soluble F1 motor that catalyze ATP synthesis. In E. coli, the Fo motor is composed of a c10 ring (rotor) alongside subunit a (stator), which together provide two aqueous half channels that facilitate proton translocation. Previous work has suggested that Arg50 and Thr51 on the cytoplasmic side of each subunit c are involved in the proton translocation process, and positive charge is conserved in this region of subunit c. To further investigate the role of these residues and the chemical requirements for activity at these positions, we generated 13 substitution mutants and assayed their in vitro ATP synthesis, H+ pumping, and passive H+ permeability activities, as well as the ability of mutants to carry out oxidative phosphorylation in vivo. While polar and hydrophobic mutations were generally tolerated in either position, introduction of negative charge or removal of polarity caused a substantial defect. We discuss the possible effects of altered electrostatics on the interaction between the rotor and stator, water structure in the aqueous channel, and interaction of the rotor with cardiolipin.


Assuntos
Escherichia coli , Prótons , Escherichia coli/genética , Trifosfato de Adenosina , Citoplasma , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...