Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 132(1): 261-269, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762527

RESUMO

Proteinuria is a transient physiological phenomenon that occurs with a range of physical activities and during ascent to altitude. Exercise intensity appears to dictate the magnitude of postexercise proteinuria; however, evidence also indicates the possible contributions from exercise-induced hypoxemia or reoxygenation. Using an environmental hypoxic chamber, this crossover-designed study aimed to evaluate urinary alpha-1 acid glycoprotein (α1-AGP) excretion pre/postexercise performed in hypoxia (HYP) and normoxia (NOR). Sixteen individuals underwent experimental sessions in normoxia (NOR, 20.9% O2) and hypoxia (HYP, 12.0% O2). Sessions began with a 2-h priming period before completing a graded maximal exercise test (GXT) on a cycle ergometer, which was followed by continuation of exposure for an additional 2 h. Physiological responses (i.e., blood pressure, heart rate, and peripheral oxygenation), Lake Louise Scores (LLSs), and urine specimens (analyzed for albumin and α1-AGP) were collected pre- and postexercise (after 30, 60, and 120 min). Peak power output was significantly reduced in HYP (193 ± 45 W) compared with NOR (249 ± 59 W, P < 0.01). Postexercise urinary α1-AGP was greater in NOR (20.04 ± 14.84 µg·min-1) than in HYP (15.08 ± 13.46 µg·min-1), albeit the difference was not significant (P > 0.05). Changes in urinary α1-AGP from pre- to post-30 min were not related to physiological responses or performance outcomes observed during GXT in NOR or HYP. Despite profound systemic hypoxemia with maximal exercise in hypoxia, postexercise α1-AGP excretion was not elevated above the levels observed following normoxic exercise.NEW & NOTEWORTHY By superimposing hypoxic exposure and maximal exercise, we were able to investigate the impact of hypoxia on postexercise proteinuria. Urinalysis for α1-AGP (via particle-enhanced immunoturbidimetry) in specimens collected pre-/postexercise enabled the sensitive detection of altered glomerular permeability. Data indicated that exercise intensity, rather than the degree of exercise-induced hypoxemia, determines postexercise proteinuria.


Assuntos
Hipóxia , Orosomucoide , Altitude , Exercício Físico , Teste de Esforço , Humanos
2.
BMJ Open Sport Exerc Med ; 6(1): e000662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32341794

RESUMO

INTRODUCTION: Proteinuria increases at altitude and with exercise, potentially as a result of hypoxia. Using urinary alpha-1 acid glycoprotein (α1-AGP) levels as a sensitive marker of proteinuria, we examined the impact of relative hypoxia due to high altitude and blood pressure-lowering medication on post-exercise proteinuria. METHODS: Twenty individuals were pair-matched for sex, age and ACE genotype. They completed maximal exercise tests once at sea level and twice at altitude (5035 m). Losartan (100 mg/day; angiotensin-receptor blocker) and placebo were randomly assigned within each pair 21 days before ascent. The first altitude exercise test was completed within 24-48 hours of arrival (each pair within ~1 hour). Acetazolamide (125 mg two times per day) was administrated immediately after this test for 48 hours until the second altitude exercise test. RESULTS: With placebo, post-exercise α1-AGP levels were similar at sea level and altitude. Odds ratio (OR) for increased resting α1-AGP at altitude versus sea level was greater without losartan (2.16 times greater). At altitude, OR for reduced post-exercise α1-AGP (58% lower) was higher with losartan than placebo (2.25 times greater, p=0.059) despite similar pulse oximetry (SpO2) (p=0.95) between groups. Acetazolamide reduced post-exercise proteinuria by approximately threefold (9.3±9.7 vs 3.6±6.0 µg/min; p=0.025) although changes were not correlated (r=-0.10) with significant improvements in SpO2 (69.1%±4.5% vs 75.8%±3.8%; p=0.001). DISCUSSION: Profound systemic hypoxia imposed by altitude does not result in greater post-exercise proteinuria than sea level. Losartan and acetazolamide may attenuate post-exercise proteinuria, however further research is warranted.

3.
J Acoust Soc Am ; 125(5): 3317-27, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19425673

RESUMO

Natural, spontaneous speech (and even quite careful speech) often shows extreme reduction in many speech segments, even resulting in apparent deletion of consonants. Where the flap ([inverted J]) allophone of /t/ and /d/ is expected in American English, one frequently sees an approximant-like or even vocalic pattern, rather than a clear flap. Still, the /t/ or /d/ is usually perceived, suggesting the acoustic characteristics of a reduced flap are sufficient for perception of a consonant. This paper identifies several acoustic characteristics of reduced flaps based on previous acoustic research (size of intensity dip, consonant duration, and F4 valley) and presents phonetic identification data for continua that manipulate these acoustic characteristics of reduction. The results indicate that the most obvious types of acoustic variability seen in natural flaps do affect listeners' percept of a consonant, but not sufficiently to completely account for the percept. Listeners are affected by the acoustic characteristics of consonant reduction, but they are also very skilled at evaluating variability along the acoustic dimensions that realize reduction.


Assuntos
Sinais (Psicologia) , Fonética , Percepção da Fala , Análise de Variância , Humanos , Espectrografia do Som , Fala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...