Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Extremophiles ; 19(3): 597-617, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25778451

RESUMO

Active hydrothermal chimneys host diverse microbial communities exhibiting various metabolisms including those involved in various biogeochemical cycles. To investigate microbe-mineral-fluid interactions in hydrothermal chimney and the driver of microbial diversity, a cultural approach using a gas-lift bioreactor was chosen. An enrichment culture was performed using crushed active chimney sample as inoculum and diluted hydrothermal fluid from the same vent as culture medium. Daily sampling provided time-series access to active microbial diversity and medium composition. Active archaeal and bacterial communities consisted mainly of sulfur, sulfate and iron reducers and hydrogen oxidizers with the detection of Thermococcus, Archaeoglobus, Geoglobus, Sulfurimonas and Thermotoga sequences. The simultaneous presence of active Geoglobus sp. and Archaeoglobus sp. argues against competition for available carbon sources and electron donors between sulfate and iron reducers at high temperature. This approach allowed the cultivation of microbial populations that were under-represented in the initial environmental sample. The microbial communities are heterogeneously distributed within the gas-lift bioreactor; it is unlikely that bulk mineralogy or fluid chemistry is the drivers of microbial community structure. Instead, we propose that micro-environmental niche characteristics, created by the interaction between the mineral grains and the fluid chemistry, are the main drivers of microbial diversity in natural systems.


Assuntos
Reatores Biológicos/microbiologia , Fontes Hidrotermais/microbiologia , Microbiota , Minerais/metabolismo , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/isolamento & purificação , Bactérias/metabolismo , Fontes Hidrotermais/química , Minerais/análise , Oxirredução , Enxofre/metabolismo
2.
FEMS Microbiol Ecol ; 77(3): 647-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21707671

RESUMO

The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.


Assuntos
Archaea/isolamento & purificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , DNA Arqueal/genética , Hidrogênio/metabolismo , Metano/metabolismo , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética
3.
Proc Natl Acad Sci U S A ; 108(19): 7698-703, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21518892

RESUMO

Among the deep-sea hydrothermal vent sites discovered in the past 30 years, Lost City on the Mid-Atlantic Ridge (MAR) is remarkable both for its alkaline fluids derived from mantle rock serpentinization and the spectacular seafloor carbonate chimneys precipitated from these fluids. Despite high concentrations of reduced chemicals in the fluids, this unique example of a serpentinite-hosted hydrothermal system currently lacks chemosynthetic assemblages dominated by large animals typical of high-temperature vent sites. Here we report abundant specimens of chemosymbiotic mussels, associated with gastropods and chemosymbiotic clams, in approximately 100 kyr old Lost City-like carbonates from the MAR close to the Rainbow site (36 °N). Our finding shows that serpentinization-related fluids, unaffected by high-temperature hydrothermal circulation, can occur on-axis and are able to sustain high-biomass communities. The widespread occurrence of seafloor ultramafic rocks linked to likely long-range dispersion of vent species therefore offers considerably more ecospace for chemosynthetic fauna in the oceans than previously supposed.


Assuntos
Fósseis , Mytilidae , Animais , Oceano Atlântico , Biomassa , Carbonatos/química , Ecossistema , Sedimentos Geológicos/química , Fenômenos Geológicos , Temperatura Alta , Mytilidae/química
4.
Environ Microbiol ; 11(9): 2446-62, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19624712

RESUMO

The distribution of the archaeal communities in deep subseafloor sediments [0-36 m below the seafloor (mbsf)] from the New Caledonia and Fairway Basins was investigated using DNA- and RNA-derived 16S rRNA clone libraries, functional genes and denaturing gradient gel electrophoresis (DGGE). A new method, Co-Migration DGGE (CM-DGGE), was developed to access selectively the active archaeal diversity. Prokaryotic cell abundances at the open-ocean sites were on average approximately 3.5 times lower than at a site under terrestrial influence. The sediment surface archaeal community (0-1.5 mbsf) was characterized by active Marine Group 1 (MG-1) Archaea that co-occurred with ammonia monooxygenase gene (amoA) sequences affiliated to a group of uncultured sedimentary Crenarchaeota. However, the anoxic subsurface methane-poor sediments (below 1.5 mbsf) were dominated by less active archaeal communities, such as the Thermoplasmatales, Marine Benthic Group D and other lineages probably involved in the methane cycle (Methanosarcinales, ANME-2 and DSAG/MBG-B). Moreover, the archaeal diversity of some sediment layers was restricted to only one lineage (Uncultured Euryarchaeota, DHVE6, MBG-B, MG-1 and SAGMEG). Sequences forming two clusters within the Thermococcales order were also present in these cold subseafloor sediments, suggesting that these uncultured putative thermophilic archaeal communities might have originated from a different environment. This study shows a transition between surface and subsurface sediment archaeal communities.


Assuntos
Archaea/classificação , Sedimentos Geológicos/microbiologia , Archaea/genética , Sequência de Bases , Biodiversidade , Biomassa , Eletroforese/métodos , Geografia , Sedimentos Geológicos/química , Dados de Sequência Molecular , Nova Caledônia , Oceanos e Mares , Oxirredutases/genética , Oxirredutases/metabolismo , Oceano Pacífico , Filogenia , RNA Ribossômico 16S/análise , Água do Mar/química , Água do Mar/microbiologia
5.
ISME J ; 3(7): 873-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19295639

RESUMO

A novel hydrothermal site was discovered in March 2007, on the mid-Atlantic ridge during the cruise 'Serpentine'. At a depth of 4100 m, the site 'Ashadze' is the deepest vent field known so far. Smoker samples were collected with the ROV 'Victor 6000' and processed in the laboratory for the enrichment of anaerobic heterotrophic microorganisms under high-temperature and high-hydrostatic pressure conditions. Strain CH1 was successfully isolated and assigned to the genus Pyrococcus, within the Euryarchaeota lineage within the Archaea domain. This organism grows within a temperature range of 80 to 108 degrees C and a pressure range of 20 to 120 MPa, with optima for 98 degrees C and 52 MPa respectively. Pyrococcus CH1 represents the first obligate piezophilic hyperthermophilic microorganism known so far. Comparisons of growth yields obtained under high-temperature/high-pressure conditions for relative organisms isolated from various depths, showed clear relationships between depth at origin and responses to hydrostatic pressure.


Assuntos
Temperatura Alta , Pressão Hidrostática , Pyrococcus/classificação , Pyrococcus/isolamento & purificação , Oceano Atlântico , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , Fontes Termais , Dados de Sequência Molecular , Filogenia , Pyrococcus/fisiologia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
6.
Sci Total Environ ; 392(1): 119-29, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18076972

RESUMO

The distribution of Fe, Cu, Zn, Pb, Cd between the dissolved (<2 microm) and the particulate (>2 microm) fractions was measured after in-situ filtration in two hydrothermal habitats. The total metal concentration ranges exhibit a clear enrichment compared with the seawater concentration, accounting for the hydrothermal input for all the metals considered. Iron is the predominant metal (5-50 microM) followed by Zn and Cu. Cd and Pb are present at the nM level. At the scale studied, the behavior of temperature, pH and dissolved iron is semi-conservative whereas the other dissolved and particulate metals are characterized by non-conservative patterns. The metal enrichment of the >2 microm fraction results from the settlement and accumulation of particulate matter close to the organisms, acting as a secondary metal source. The enrichment observed in the dissolved fraction can be related to the dissolution or oxidation of particles (mainly polymetallic sulfide) or to the presence of small particles and large colloids not retained on the 2 microm frit. SEM observations indicate that the bulk particulate observed is characteristic of crystalline particles settling rapidly from the high temperature smoker (sphalerite, wurtzite and pyrite), amorphous structures and eroded particles formed in the external zone of the chimney. Precipitation of Zn, Cu, Cd and Pb with Fe as wurtzite, sphalerite and pyrite is the main process taking place within the area studied and is semi-quantitative. The distribution of the dominant observed fauna has been related to the gradient resulting from the dilution process, with the alvinellids worms colonizing the hotter and more variable part of the mixing zone, but also to the metallic load of the mixing zone. Dissolved and particulate metal concentrations are therefore necessary abiotic factors to be studied in a multiparametric approach to understand the faunal distribution in hydrothermal ecosystems.


Assuntos
Ecossistema , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Metais/análise , Poluentes Químicos da Água/análise , Animais , Concentração de Íons de Hidrogênio , Biologia Marinha , Microscopia Eletrônica de Varredura , Solubilidade , Temperatura
7.
FEMS Microbiol Ecol ; 58(3): 449-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16989658

RESUMO

Rapid growth of microbial sulphur mats have repeatedly been observed during oceanographic cruises to various deep-sea hydrothermal vent sites. The microorganisms involved in the mat formation have not been phylogenetically characterized, although the production of morphologically similar sulphur filaments by a Arcobacter strain coastal marine has been documented. An in situ collector deployed for 5 days at the 13 degrees N deep-sea hydrothermal vent site on the East Pacific Rise (EPR) was rapidly colonized by a filamentous microbial mat. Microscopic and chemical analyses revealed that the mat consisted of a network of microorganisms embedded in a mucous sulphur-rich matrix. Molecular surveys based on 16S rRNA gene and aclB genes placed all the environmental clone sequences within the Epsilonproteobacteria. Although few 16S rRNA gene sequences were affiliated with that of cultured organisms, the majority was related to uncultured representatives of the Arcobacter group (< or = 95% sequence similarity). A probe designed to target all of the identified lineages hybridized with more than 95% of the mat community. Simultaneous hybridizations with the latter probe and a probe specific to Arcobacter spp. confirmed the numerical dominance of Arcobacter-like bacteria. This study provides the first example of the prevalence and ecological significance of free-living Arcobacter at deep-sea hydrothermal vents.


Assuntos
Epsilonproteobacteria/classificação , Epsilonproteobacteria/isolamento & purificação , Sulfetos/análise , Microbiologia da Água , Aderência Bacteriana , Epsilonproteobacteria/genética , Biologia Marinha , Oceano Pacífico , Filogenia , RNA Bacteriano/genética
8.
Environ Microbiol ; 7(5): 698-714, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15819852

RESUMO

Two sediment cores were collected in an inactive area of the deep-sea hydrothermal vent field Rainbow (36 degrees N on the Mid-Atlantic Ridge). Metals and carbonates were abundant throughout the cores; calcite (CaCO3) was found throughout the cores while dolomite [CaMg(CO3)2] and siderite (FeCO3) were only found in deeper layers. Using polymerase chain reaction (PCR)-amplified 16S rRNA gene sequence analysis, we examined the bacterial and archaeal diversity in a sediment layer that contained the three carbonates. The retrieved bacterial and archaeal sequences were new and less than 4% of the sequences exhibited 94% or more identity with that of cultured organisms. The analysis of the composition of the bacterial library revealed a high diversity of sequences. Half of the bacterial clones was affiliated to the gamma-Proteobacteria. Most of them had environmental sequences retrieved from deep-sea sediments as closest relatives, some of which being distantly related to free-living and symbiotic sulfur-oxidizers. Other sequences clustered in the alpha-, delta- and epsilon-Proteobacteria, the 'Bacteroidetes', the 'Planctomycetes', the 'Nitrospirae', the 'Actinobacteria', the 'Chlorobi ' and the 'Verrumicrobia'. Based on clonal abundance and sequence comparisons, phylotype groups putatively involved in the oxydation of sulfur compounds appeared to dominate in the studied sample. The majority of the archaeal sequences clustered in an euryarchaeotic lineage recently identified in the walls of black smokers suggesting a possible thermophilic way of life of these uncultured microorganisms. Oxygen isotopic composition of siderite and dolomite indicated that they were formed at 67 degrees C and 94 degrees C respectively. Together with chemical and microbiological data, this suggested that hydrothermal fluids may have circulated through this sediment.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Carbonatos/análise , Sedimentos Geológicos/microbiologia , Archaea/genética , Oceano Atlântico , Bactérias/genética , Sequência de Bases , Isótopos de Carbono/análise , Clonagem Molecular , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Variação Genética , Sedimentos Geológicos/química , Temperatura Alta , Minerais/análise , Dados de Sequência Molecular , Isótopos de Oxigênio/análise , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...