Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616684

RESUMO

This paper addresses the problem of disentangling nonoverlapping multicomponent signals from their observation being possibly contaminated by external additive noise. We aim to extract and to retrieve the elementary components (also called modes) present in an observed nonstationary mixture signal. To this end, we propose a new pseudo-Bayesian algorithm to perform the estimation of the instantaneous frequency of the signal modes from their time-frequency representation. In a second time, a detection algorithm is developed to restrict the time region where each signal component behaves, to enhance quality of the reconstructed signal. We finally deal with the presence of noise in the vicinity of the estimated instantaneous frequency by introducing a new reconstruction approach relying on nonbinary band-pass synthesis filters. We validate our methods by comparing their reconstruction performance to state-of-the-art approaches through several experiments involving both synthetic and real-world data under different experimental conditions.

2.
Entropy (Basel) ; 22(9)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-33286680

RESUMO

Since decades past, time-frequency (TF) analysis has demonstrated its capability to efficiently handle non-stationary multi-component signals which are ubiquitous in a large number of applications. TF analysis us allows to estimate physics-related meaningful parameters (e.g., F0, group delay, etc.) and can provide sparse signal representations when a suitable tuning of the method parameters is used. On another hand, deep learning with Convolutional Neural Networks (CNN) is the current state-of-the-art approach for pattern recognition and allows us to automatically extract relevant signal features despite the fact that the trained models can suffer from a lack of interpretability. Hence, this paper proposes to combine together these two approaches to take benefit of their respective advantages and addresses non-intrusive load monitoring (NILM) which consists of identifying a home electrical appliance (HEA) from its measured energy consumption signal as a "toy" problem. This study investigates the role of the TF representation when synchrosqueezed or not, used as the input of a 2D CNN applied to a pattern recognition task. We also propose a solution for interpreting the information conveyed by the trained CNN through different neural architecture by establishing a link with our previously proposed "handcrafted" interpretable features thanks to the layer-wise relevant propagation (LRP) method. Our experiments on the publicly available PLAID dataset show excellent appliance recognition results (accuracy above 97%) using the suitable TF representation and allow an interpretation of the trained model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...