Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 432(16): 4544-4560, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32534063

RESUMO

The regulation of gene expression is a result of a complex interplay between chromatin remodeling, transcription factors, and signaling molecules. Cell differentiation is accompanied by chromatin remodeling of specific loci to permanently silence genes that are not essential for the differentiated cell activity. The molecular cues that recruit the chromatin remodeling machinery are not well characterized. IRF8 is an immune-cell specific transcription factor and its expression is augmented by interferon-γ. Therefore, it serves as a model gene to elucidate the molecular mechanisms governing its silencing in non-immune cells. Ahigh-throughput shRNA library screen in IRF8 expression-restrictive cells enabled the identification of MafK as modulator of IRF8 silencing, affecting chromatin architecture. ChIP-Seq analysis revealed three MafK binding regions (-25 kb, -20 kb, and IRF8 6th intron) within the IRF8 locus. These MafK binding sites are sufficient to repress a reporter gene when cloned in genome-integrated lentiviral reporter constructs in only expression-restrictive cells. Conversely, plasmid-based constructs do not demonstrate such repressive effect. These results highlight the role of these MafK binding sites in mediating repressed chromatin assembly. Finally, a more thorough genomic analysis was performed, using CRISPR-Cas9 to delete MafK-int6 binding region in IRF8 expression-restrictive cells. Deleted clones exhibited an accessible chromatin conformation within the IRF8 locus that was accompanied by a significant increase in basal expression of IRF8 that was further induced by interferon-γ. Taken together, we identified and characterized several MafK binding elements within the IRF8 locus that mediate repressive chromatin conformation resulting in the silencing of IRF8 expression in a celltype-specific manner.


Assuntos
Cromatina/metabolismo , Fatores Reguladores de Interferon/genética , Fator de Transcrição MafK/genética , Fator de Transcrição MafK/metabolismo , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores Reguladores de Interferon/química , Fatores Reguladores de Interferon/metabolismo , Camundongos , Células NIH 3T3 , Especificidade de Órgãos , Células RAW 264.7 , RNA Interferente Pequeno/farmacologia
2.
PLoS One ; 11(6): e0156812, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257682

RESUMO

Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron's properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation.


Assuntos
Cromatina/metabolismo , Fatores Reguladores de Interferon/metabolismo , Íntrons/genética , Macrófagos/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Células Cultivadas , Imunoprecipitação da Cromatina , Citometria de Fluxo , Humanos , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Miócitos Cardíacos/metabolismo , Células NIH 3T3 , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...