Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 92020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32851974

RESUMO

The presence and identity of neural progenitors in the enteric nervous system (ENS) of vertebrates is a matter of intense debate. Here, we demonstrate that the non-neuronal ENS cell compartment of teleosts shares molecular and morphological characteristics with mammalian enteric glia but cannot be identified by the expression of canonical glial markers. However, unlike their mammalian counterparts, which are generally quiescent and do not undergo neuronal differentiation during homeostasis, we show that a relatively high proportion of zebrafish enteric glia proliferate under physiological conditions giving rise to progeny that differentiate into enteric neurons. We also provide evidence that, similar to brain neural stem cells, the activation and neuronal differentiation of enteric glia are regulated by Notch signalling. Our experiments reveal remarkable similarities between enteric glia and brain neural stem cells in teleosts and open new possibilities for use of mammalian enteric glia as a potential source of neurons to restore the activity of intestinal neural circuits compromised by injury or disease.


Assuntos
Sistema Nervoso Entérico/citologia , Neuroglia/citologia , Animais , Encéfalo/citologia , Camundongos , Células-Tronco Neurais/citologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Peixe-Zebra
2.
Sci Rep ; 10(1): 10953, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616790

RESUMO

Anatomically incomplete spinal cord injuries can be followed by functional recovery mediated, in part, by the formation of intraspinal detour circuits. Here, we show that adult mice recover tactile and proprioceptive function following a unilateral dorsal column lesion. We therefore investigated the basis of this recovery and focused on the plasticity of the dorsal column-medial lemniscus pathway. We show that ascending dorsal root ganglion (DRG) axons branch in the spinal grey matter and substantially increase the number of these collaterals following injury. These sensory fibers exhibit synapsin-positive varicosities, indicating their integration into spinal networks. Using a monosynaptic circuit tracing with rabies viruses injected into the cuneate nucleus, we show the presence of spinal cord neurons that provide a detour pathway to the original target area of DRG axons. Notably the number of contacts between DRG collaterals and those spinal neurons increases by more than 300% after injury. We then characterized these interneurons and showed that the lesion triggers a remodeling of the connectivity pattern. Finally, using re-lesion experiments after initial remodeling of connections, we show that these detour circuits are responsible for the recovery of tactile and proprioceptive function. Taken together our study reveals that detour circuits represent a common blueprint for axonal rewiring after injury.


Assuntos
Gânglios Espinais/fisiologia , Regeneração Nervosa , Vias Neurais , Neurônios/fisiologia , Recuperação de Função Fisiológica , Células Receptoras Sensoriais/fisiologia , Traumatismos da Medula Espinal/prevenção & controle , Animais , Comportamento Animal , Gânglios Espinais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Neurônios/citologia , Traumatismos da Medula Espinal/etiologia , Traumatismos da Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...