Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 9(2): 271-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19955083

RESUMO

To identify new molecular targets of rapamycin, an anticancer and immunosuppressive drug, we analyzed temporal changes in yeast over 6 h in response to rapamycin at the transcriptome and proteome levels and integrated the expression patterns with functional profiling. We show that the integration of transcriptomics, proteomics, and functional data sets provides novel insights into the molecular mechanisms of rapamycin action. We first observed a temporal delay in the correlation of mRNA and protein expression where mRNA expression at 1 and 2 h correlated best with protein expression changes after 6 h of rapamycin treatment. This was especially the case for the inhibition of ribosome biogenesis and induction of heat shock and autophagy essential to promote the cellular sensitivity to rapamycin. However, increased levels of vacuolar protease could enhance resistance to rapamycin. Of the 85 proteins identified as statistically significantly changing in abundance, most of the proteins that decreased in abundance were correlated with a decrease in mRNA expression. However, of the 56 proteins increasing in abundance, 26 were not correlated with an increase in mRNA expression. These protein changes were correlated with unchanged or down-regulated mRNA expression. These proteins, involved in mitochondrial genome maintenance, endocytosis, or drug export, represent new candidates effecting rapamycin action whose expression might be post-transcriptionally or post-translationally regulated. We identified GGC1, a mitochondrial GTP/GDP carrier, as a new component of the rapamycin/target of rapamycin (TOR) signaling pathway. We determined that the protein product of GGC1 was stabilized in the presence of rapamycin, and the deletion of the GGC1 enhanced growth fitness in the presence of rapamycin. A dynamic mRNA expression analysis of Deltaggc1 and wild-type cells treated with rapamycin revealed a key role for Ggc1p in the regulation of ribosome biogenesis and cell cycle progression under TOR control.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Sirolimo/farmacologia , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fatores de Tempo
2.
Mol Cell Proteomics ; 7(4): 631-44, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18029349

RESUMO

If the large collection of microarray-specific statistical tools was applicable to the analysis of quantitative shotgun proteomics datasets, it would certainly foster an important advancement of proteomics research. Here we analyze two large multidimensional protein identification technology datasets, one containing eight replicates of the soluble fraction of a yeast whole-cell lysate and one containing nine replicates of a human immunoprecipitate, to test whether normalized spectral abundance factor (NSAF) values share substantially similar statistical properties with transcript abundance values from Affymetrix GeneChip data. First we show similar dynamic range and distribution properties of these two types of numeric values. Next we show that the standard deviation (S.D.) of a protein's NSAF values was dependent on the average NSAF value of the protein itself, following a power law. This relationship can be modeled by a power law global error model (PLGEM), initially developed to describe the variance-versus-mean dependence that exists in GeneChip data. PLGEM parameters obtained from NSAF datasets proved to be surprisingly similar to the typical parameters observed in GeneChip datasets. The most important common feature identified by this approach was that, although in absolute terms the S.D. of replicated abundance values increases as a function of increasing average abundance, the coefficient of variation, a relative measure of variability, becomes progressively smaller under the same conditions. We next show that PLGEM parameters were reasonably stable to decreasing numbers of replicates. We finally illustrate one possible application of PLGEM in the identification of differentially abundant proteins that might potentially outperform standard statistical tests. In summary, we believe that this body of work lays the foundation for the application of microarray-specific tools in the analysis of NSAF datasets.


Assuntos
Perfilação da Expressão Gênica/estatística & dados numéricos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Proteínas/metabolismo , Proteômica/estatística & dados numéricos , Interpretação Estatística de Dados , Humanos , Imunoprecipitação , Proteínas/análise , Proteínas/genética , Proteoma/análise , Proteoma/genética , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...