Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Atmos ; 2(6): 1469-1486, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36561556

RESUMO

How secondary aerosols form is critical as aerosols' impact on Earth's climate is one of the main sources of uncertainty for understanding global warming. The beginning stages for formation of prenucleation complexes, that lead to larger aerosols, are difficult to decipher experimentally. We present a computational chemistry study of the interactions between three different acid molecules and two different bases. By combining a comprehensive search routine covering many thousands of configurations at the semiempirical level with high level quantum chemical calculations of approximately 1000 clusters for every possible combination of clusters containing a sulfuric acid molecule, a formic acid molecule, a nitric acid molecule, an ammonia molecule, a dimethylamine molecule, and 0-5 water molecules, we have completed an exhaustive search of the DLPNO-CCSD(T)/CBS//ωB97X-D/6-31++G** Gibbs free energy surface for this system. We find that the detailed geometries of each minimum free energy cluster are often more important than traditional acid or base strength. Addition of a water molecule to a dry cluster can enhance stabilization, and we find that the (SA)(NA)(A)(DMA)(W) cluster has special stability. Equilibrium calculations of SA, FA, NA, A, DMA, and water using our quantum chemical ΔG° values for cluster formation and realistic estimates of the concentrations of these monomers in the atmosphere reveals that nitric acid can drive early stages of particle formation just as efficiently as sulfuric acid. Our results lead us to believe that particle formation in the atmosphere results from the combination of many different molecules that are able to form highly stable complexes with acid molecules such as SA, NA, and FA.

2.
J Phys Chem Lett ; 13(34): 8038-8046, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993823

RESUMO

By addressing the defects in classical nucleation theory (CNT), we develop an approach for extracting the free energy of small water clusters from nucleation rate experiments without any assumptions about the form of the cluster free energy. For temperatures higher than ∼250 K, the extracted free energies from experimental data points indicate that their ratio to the free energies predicted by CNT exhibits nonmonotonic behavior as the cluster size changes. We show that this ratio increases from almost zero for monomers and passes through (at least) one maximum before approaching one for large clusters. For temperatures lower than ∼250 K, the behavior of the ratio between extracted energies and CNT's prediction changes; it increases with cluster size, but it remains below one for almost all of the experimental data points. We also applied a state-of-the-art quantum mechanics model to calculate free energies of water clusters (2-14 molecules); the results support the observed change in behavior based on temperature, albeit for temperatures above and below ∼298 K. We compared two different model chemistries, DLPNO-CCSD(T)/CBS//ωB97xD/6-31++G** and G3, against each other and the experimental value for formation of the water dimer.

3.
J Phys Chem A ; 126(10): 1718-1728, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35235333

RESUMO

We explored the hypothesis that on the nanoscale level, acids and bases might exhibit different behavior than in bulk solution. Our study system consisted of sulfuric acid, formic acid, ammonia, and water. We calculated highly accurate Domain-based Local pair-Natural Orbital- Coupled-Cluster/Complete Basis Set (DLPNO-CCSD(T)/CBS) energies on DFT geometries and used the resulting Gibbs free energies for cluster formation to compute the overall equilibrium constants for every possible cluster. The equilibrium constants combined with the initial monomer concentrations were used to predict the formation of clusters at the top and the bottom of the troposphere. Our results show that formic acid is as effective as ammonia at forming clusters with sulfuric acid and water. The structure of formic acid is uniquely suited to form hydrogen bonds with sulfuric acid. Additionally, it can partner with water to form bridges from one side of sulfuric acid to the other, hence demonstrating that hydrogen bonding topology is more important than acid/base strength in these atmospheric prenucleation clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...