Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963165

RESUMO

BACKGROUND: Starch is the most abundant constituent (dry weight) in the barley endosperm, followed by protein. Variability of compositional and potentially related physical traits due to genotype and environment can have important implications for the malting and brewing industry. This was the first study to assess the effects of genotype, environment, and their interaction (G × E) on endosperm texture, protein content, and starch traits corresponding to granule size, gelatinization, content, and composition, using a multi-environment variety trial in California, USA. RESULTS: Overall, environment explained the largest variance for all traits (ranging from 23.2% to 76.5%), except the endosperm texture traits wherein the G × E term explained the largest variance (45.0-86.5%). Our unique method to quantify the proportion of fine and coarse milled barley particles using laser diffraction showed a binomial distribution of endosperm texture. The number of small starch granules varied significantly (P-value < 0.05) across genotypes and environments. We observed negative correlations between total protein content and each of enthalpy (-0.70), total starch content (-0.54), and difference between offset and onset gelatinization temperature (-0.52). Furthermore, amylose to amylopectin ratio was positively correlated to volume of small starch granules (0.36). CONCLUSION: Our findings indicate that environment played a larger role in influencing the majority of starch-related physical and compositional traits. In contrast, variance in endosperm texture was largely explained by G × E. Maltsters would benefit from accounting for environmental contributions in addition to solely genotype when making sourcing decisions, especially with regards to total protein, total starch, enthalpy, and difference between offset and onset gelatinization temperature. © 2024 Society of Chemical Industry.

2.
J Agric Food Chem ; 72(14): 7618-7628, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38538519

RESUMO

Beer has over 600 flavor compounds and creates a positive tasting experience with acceptable sensory properties, which are essential for the best consumer experience. Spontaneous and mixed-culture fermentation beers, generally classified as sour beers, are gaining popularity compared to typical lager or ale styles, which have dominated in the USA for the last few decades. Unique and acceptable flavor compounds characterize sour beers, but some unfavorable aspects appear in conjunction. One such unfavorable flavor is called "mousy". This description is usually labeled as an unpleasant odor, identifying spoilage of fermented food and beverages. It is related as having the odor of mouse urine, cereal, corn tortilla chips, or freshly baked sour bread. The main compounds responsible for it are N-heterocyclic compounds: 2-acetyltetrahydropyridine, 2-acetyl-1-pyrroline, and 2-ethyltetrahydropyridine. The most common beverages associated with mousy off-flavor are identified in wines, sour beers, other grain-based beverages, and kombucha, which may contain heterofermentative lactic acid bacteria, acetic acid bacteria, and/or yeast/fungus cultures. In particular, the fungal species Brettanomyces bruxellensis are associated with mousy-off flavor occurrence in fermented beverages matrices. However, many factors for N-heterocycle formation are not well-understood. Currently, the research and development of mixed-cultured beer and non/low alcohol beverages (NABLAB) has increased to obtain the highest quality, sensory, functionality, and most notably safety standards, and also to meet consumers' demand for a balanced sourness in these beverages. This paper introduces mousy off-flavor expression in beers and beverages, which occurs in spontaneous or mixed-culture fermentations, with a focus on sour beers due to common inconsistency aspects in fermentation. We discuss and suggest possible pathways of mousy off-flavor development in the beer matrix, which also apply to other fermented beverages, including non/low alcohol drinks, e.g., kombucha and low/nonalcohol beers. Some precautions and modifications may prevent the occurrence of these off-flavor compounds in the beverage matrix: improving raw material quality, adjusting brewing processes, and using specific strains of yeast and bacteria that are less likely to produce the off-flavor. Conceivably, it is clear that spontaneous and mixed culture fermentation is gaining popularity in industrial, craft, and home brewing. The review discusses important elements to identify and understand metabolic pathways, following the prevention of spoilage targeted to off-flavor compounds development in beers and NABLABs.


Assuntos
Cerveja , Lactobacillales , Bebidas Alcoólicas , Bactérias , Cerveja/análise , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/análise
3.
MethodsX ; 12: 102643, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38510935

RESUMO

Mousy off-flavor describes N-heterocycles compounds related to spoilage in the brewing industry. It has also been identified in sour beers through sensory analysis. Therefore, preventing spoilage N-heterocycles development is essential to preserve end-products and obviate economic losses. To this day, no methods or protocols have been reported to identifying mousy off-flavor compounds in a beer matrix. The main objective of this work was to develop a standardized quantification method for 2-acetyl-3,4,5,6-tetrahydropyridine (ATHP) in beer matrix, by Liquid Chromatography Mass Spectrometry with Electrospray Ionization (LC-MS-ESI). Extraction of ATHP in the samples was performed using QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique. Over a dozen different potentially mousy cask-aged sour beers including other spontaneously fermented beverages were provided, based on sensory analysis, to determine the variation in ATHP levels. Results indicated ATHP was found in all the samples, ranging from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1. Herein, we described our detection method of mousy-off flavor compounds which enables future research to mitigate the occurrence of such defects in fermented beverages matrix.•ATHP content in samples varied from 1.64 ± 0.06 to 57.96 ± 2.15 µg L-1.•The recovery range of ATHP using LC-MS-ESI varied from 71% to 97%.•Basified QuEChERS salting-out procedure is applicable for ATHP extraction from beer and other fermented beverages matrices.

4.
J Fungi (Basel) ; 9(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38132738

RESUMO

Although proline is the most or second most abundant amino acid in wort and grape must, it is not fully consumed by the yeast Saccharomyces cerevisiae during alcoholic fermentation, unlike other amino acids. Our previous studies showed that arginine, the third most abundant amino acid in wort, inhibits the utilization of proline in most strains of S. cerevisiae. Furthermore, we found that some non-Saccharomyces yeasts utilized proline in a specific artificial medium with arginine and proline as the only nitrogen source, but these yeasts were not suitable for beer fermentation due to their low alcohol productivity. For yeasts to be useful for brewing, they need to utilize proline and produce alcohol during fermentation. In this study, 11 S. cerevisiae strains and 10 non-Saccharomyces yeast strains in the Phaff Yeast Culture Collection were identified that utilize proline effectively. Notably, two of these S. cerevisiae strains, UCDFST 40-144 and 68-44, utilize proline and produce sufficient alcohol in the beer fermentation model used. These strains have the potential to create distinctive beer products that are specifically alcoholic but with a reduction in proline in the finished beer.

5.
J Proteome Res ; 22(11): 3596-3606, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37821127

RESUMO

Sorghum (Sorghum bicolor), a grass native to Africa, is a popular alternative to barley for brewing beer. The importance of sorghum to beer brewing is increasing because it is a naturally gluten-free cereal, and climate change is expected to cause a reduction in the production of barley over the coming decades. However, there are challenges associated with the use of sorghum instead of barley in beer brewing. Here, we used proteomics and metabolomics to gain insights into the sorghum brewing process to advise processes for efficient beer production from sorghum. We found that during malting, sorghum synthesizes the amylases and proteases necessary for brewing. Proteomics revealed that mashing with sorghum malt required higher temperatures than barley malt for efficient protein solubilization. Both α- and ß-amylase were considerably less abundant in sorghum wort than in barley wort, correlating with lower maltose concentrations in sorghum wort. However, metabolomics revealed higher glucose concentrations in sorghum wort than in barley wort, consistent with the presence of an abundant α-glucosidase detected by proteomics in sorghum malt. Our results indicate that sorghum can be a viable grain for industrial fermented beverage production, but that its use requires careful process optimization for efficient production of fermentable wort and high-quality beer.


Assuntos
Hordeum , Sorghum , Grão Comestível , Sorghum/metabolismo , alfa-Glucosidases/metabolismo , Cerveja/análise , Proteômica , Fermentação
6.
Front Plant Sci ; 14: 1172028, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377804

RESUMO

Cereal grains have been domesticated largely from food grains to feed and malting grains. Barley (Hordeum vulgare L.) remains unparalleled in its success as a primary brewing grain. However, there is renewed interest in "alternative" grains for brewing (and distilling) due to attention being placed on flavor, quality, and health (i.e., gluten issues) aspects that they may offer. This review covers basic and general information on "alternative grains" for malting and brewing, as well as an in-depth look at several major biochemical aspects of these grains including starch, protein, polyphenols, and lipids. These traits are described in terms of their effects on processing and flavor, as well as the prospects for improvement through breeding. These aspects have been studied extensively in barley, but little is known about the functional properties in other crops for malting and brewing. In addition, the complex nature of malting and brewing produces a large number of brewing targets but requires extensive processing, laboratory analysis, and accompanying sensory analysis. However, if a better understanding of the potential of alternative crops that can be used in malting and brewing is needed, then significantly more research is required.

7.
Food Microbiol ; 114: 104298, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37290874

RESUMO

BACKGROUND: Hop creep continues to present an unresolved issue for the brewing industry, specifically stemming from those hops added to beer during fermentation. Hops have been found to contain four dextrin-degrading enzymes: alpha amylase, beta amylase, limit dextrinase, and an amyloglucosidase. One recent hypothesis predicts that these dextrin-degrading enzymes could originate from microbes rather than the hop plant itself. SCOPE AND APPROACH: This review begins by describing how hops are processed and used in the brewing industry. It will then discuss hop creep's origins with a new beer style, antimicrobial factors from hops and resistance mechanisms that bacteria use to counter them, and finally microbial communities that inhabit hops, focusing on whether they can produce the starch degrading enzymes which drive hop creep. After initial identification, microbes with possible links to hop creep were then run through several databases to search the genomes (if available) and for those specific enzymes. KEY FINDINGS AND CONCLUSIONS: Several bacteria and fungi contain alpha amylase as well as unspecified glycosyl hydrolases, but only one contains beta amylase. Finally, this paper closes with a short summary of how abundant these organisms typically are in other flowers.


Assuntos
Humulus , beta-Amilase , Dextrinas , alfa-Amilases , Cerveja/análise
8.
Biosci Biotechnol Biochem ; 87(3): 358-362, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36496150

RESUMO

Proline contributes to the taste and flavor of foods. The yeast Saccharomyces cerevisiae poorly assimilates proline during fermentation processes, resulting in the accumulation of proline in fermentative products. We performed here a screening of in total 1138 yeasts to obtain strains that better utilize proline. Our results suggest that proline utilization occurs in the genera of Zygoascus, Galactomyces, and Magnusiomyces.


Assuntos
Saccharomyces cerevisiae , Saccharomycetales , Saccharomyces cerevisiae/metabolismo , Prolina/metabolismo , Saccharomycetales/metabolismo , Fermentação , Alimentos
9.
Biosci Biotechnol Biochem ; 86(9): 1318-1326, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749464

RESUMO

Proline is a predominant amino acid in grape must, but it is poorly utilized by the yeast Saccharomyces cerevisiae in wine-making processes. This sometimes leads to a nitrogen deficiency during fermentation and proline accumulation in wine. In this study, we clarified that a glucose response is involved in an inhibitory mechanism of proline utilization in yeast. Our genetic screen showed that strains with a loss-of-function mutation on the CDC25 gene can utilize proline even under fermentation conditions. Cdc25 is a regulator of the glucose response consisting of the Ras/cAMP-dependent protein kinase A (PKA) pathway. Moreover, we found that activation of the Ras/PKA pathway is necessary for the inhibitory mechanism of proline utilization. The present data revealed that crosstalk exists between the carbon and proline metabolisms. Our study could hold promise for the development of wine yeast strains that can efficiently assimilate proline during the fermentation processes.


Assuntos
Prolina , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vinho , ras-GRF1 , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação , Glucose/metabolismo , Mutação com Perda de Função , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Vinho/microbiologia , ras-GRF1/genética
10.
Food Chem ; 372: 131291, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34638062

RESUMO

White wheat salted noodles containing oats have a slower digestion rate those without oats, with potential health benefits. Oat ß-glucan may play an important role in this. Effects of sheeting and shearing during noodle-making and subsequent cooking on ß-glucan concentration, solubility, molecular size and starch digestibility were investigated. The levels of ß-glucan were reduced by 16% after cooking, due to the loss of ß-glucan into the cooking water. Both the noodle-making process and cooking increased the solubility of ß-glucan but did not change its average molecular size. Digestion profiles show that ß-glucan in wholemeal oat flour did not change starch digestion rates compared with isolated starch, but reduced the starch digestion rate of oat-fortified wheat noodles compared to the control (wheat noodles). Confocal laser scanning microscopy suggests that interaction between ß-glucan and protein contributes to the starch-protein matrix and changes noodle microstructure, and thus alters their digestibility.


Assuntos
Amido , beta-Glucanas , Avena , Culinária , Farinha/análise , Solubilidade
11.
Foods ; 10(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34574269

RESUMO

The beer industry is a major producer of solid waste globally, primarily in the form of brewer's spent grain (BSG), which due to its low value has historically been diverted to livestock as feed or to landfills. However, its high moisture content and chemical composition positions BSG as an ideal candidate for further processing with microbial fermentation. Recent research has focused on filamentous fungi and the ability of some species therein to degrade the predominant recalcitrant cellulolignin components of BSG to produce valuable compounds. Many species have been investigated to biovalorize this waste stream, including those in the genuses Aspergillus, Penicillium, Rhyzopus, and Trichoderma, which have been used to produce a wide array of highly valuable enzymes and other functional compounds, and to increase the nutritional value of BSG as an animal feed. This review of recent developments in the application of filamentous fungi for the valorization of BSG discusses the biochemical makeup of BSG, the biological mechanisms underlying fungi's primacy to this application, and the current applications of fungi in this realm.

12.
J Proteomics ; 242: 104221, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33866056

RESUMO

Germination is a critical process in the reproduction and propagation of flowering plants, and is also the key stage of industrial grain malting. Germination commences when seeds are steeped in water, followed by degradation of the endosperm cell walls, enzymatic digestion of starch and proteins to provide nutrients for the growing plant, and emergence of the radicle from the seed. Dormancy is a state where seeds fail to germinate upon steeping, but which prevents inappropriate premature germination of the seeds before harvest from the field. This can result in inefficiencies in industrial malting. We used Sequential Window Acquisition of all THeoretical ions Mass Spectrometry (SWATH-MS) proteomics to measure changes in the barley seed proteome throughout germination. We found a large number of proteins involved in desiccation tolerance and germination inhibition rapidly decreased in abundance after imbibition. This was followed by a decrease in proteins involved in lipid, protein and nutrient reservoir storage, consistent with induction and activation of systems for nutrient mobilisation to provide nutrients to the growing embryo. Dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, with differences in sulfur metabolic enzymes, endogenous alpha-amylase/trypsin inhibitors, and histone proteins. We verified our findings with analysis of germinating barley seeds from two commercial malting facilities, demonstrating that key features of the dynamic proteome of germinating barley seeds were conserved between laboratory and industrial scales. The results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy. SIGNIFICANCE: Germination is critical to the reproduction and propagation of flowering plants, and in industrial malting. Dormancy, where seeds fail to germinate upon steeping, can result in inefficiencies in industrial malting. Our DIA/SWATH-MS proteomics analyses identified key changes during germination, including an initial loss of proteins involved in desiccation tolerance and germination inhibition, followed by decreases in lipid, protein and nutrient reservoir storage. These changes were consistent between laboratory and industrial malting scales, and therefore demonstrate the utility of laboratory-scale barley germination as a model system for industrial malt house processes. We also showed that dormant seeds that failed to germinate showed substantial biochemical activity distinct from that of seeds undergoing germination, consistent with dormancy being an actively regulated state. Our results provide a more detailed understanding of the changes in the barley proteome during germination and give possible target proteins for testing or to inform selective breeding to enhance germination or control dormancy.


Assuntos
Germinação , Hordeum , Proteínas de Choque Térmico , Nutrientes , Proteínas de Plantas , Proteômica , Sementes
13.
Foods ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498449

RESUMO

When wheat experiences a cold-temperature 'shock' during the late stage of grain filling, it triggers the abnormal synthesis of late-maturity α-amylase (LMA). This increases the enzyme content in affected grain, which can lead to a drastic reduction in falling number (FN). By commercial standards, a low FN is taken as an indication of inferior quality, deemed unsuitable for end-product usage. Hence, LMA-affected grains are either rejected or downgraded to feed grade at the grain receiving point. However, previous studies have found no substantial correlation between low FN-LMA and bread quality. The present study extends previous investigations to semi-solid food, evaluating the physical quality of fresh white sauce processed from LMA-affected flour. Results show that high-LMA flours had low FNs and exhibited poor pasting characteristics. However, gelation occurred in the presence of other components during fresh white sauce processing. This demonstrates that LMA-affected flours may have new applications in low-viscosity products.

14.
Food Chem ; 336: 127719, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32768911

RESUMO

Wheat flour, consisting of a complex matrix of starch and protein, is used as a representative model of whole food here to investigate the binary interaction in relation to amylose level and hydrothermal treatment in noodles as a food exemplar. Noodle made of high-amylose wheat (HAW) flour showed an eight-fold higher resistant starch content, compared to the wild type. Protein removal under simulated intestinal digestion conditions resulted in higher starch digestion rate coefficients in raw and cooked flours. In cooked flours, the substrate becomes similarly accessible to digestive enzymes regardless of protein removal. The results indicate that the increased protein content in native HAW flour and thermal stability of starch in HAW noodles lead to higher food integrity and consequently enhance the resistance against α-amylase digestion. Overall, the study suggests that a diversity of starch-protein interactions in wheat-based food products underlies the nutritional value of natural whole foods.


Assuntos
Amilose/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Triticum/metabolismo , alfa-Amilases/metabolismo , Culinária , Farinha/análise , Proteínas de Plantas/química , Amido/química
15.
Parasit Vectors ; 13(1): 591, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228768

RESUMO

BACKGROUND: Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible-near-infrared (Vis-NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis-NIR spectroscopy in quantifying blood in faeces. METHODS: Visible-NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387-609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. RESULTS: Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated 'healthy' SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57-94%, specificity 44-79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. CONCLUSION: This study demonstrates the potential of Vis-NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


Assuntos
Meio Ambiente , Fezes/parasitologia , Hemoncose/veterinária , Sangue Oculto , Doenças dos Ovinos/diagnóstico , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Fatores Etários , Animais , Feminino , Hemoncose/diagnóstico , Hematócrito/veterinária , Hemoglobinas/análise , New South Wales/epidemiologia , Análise de Componente Principal , Queensland/epidemiologia , Ovinos , Doenças dos Ovinos/epidemiologia , Doenças dos Ovinos/parasitologia , Espectroscopia de Luz Próxima ao Infravermelho/normas , Espectroscopia de Luz Próxima ao Infravermelho/estatística & dados numéricos
16.
Food Chem ; 324: 126858, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32353656

RESUMO

Wheat flour noodles are sometimes fortified with ß-glucan for nutritional value, but this can decrease eating quality. The contributions of ß-glucan and starch molecular fine structure to physicochemical properties of wholemeal oat flour and to the texture of oat-fortified white salted noodles were investigated here. Hardness of oat-fortified noodles was controlled by the longer amylopectin chains (DP ≥ 26) and amount of longer amylose chains (DP ≥ 1000). Higher levels of ß-glucan, in the range from 3.1 to 5.2%, result in increased noodle hardness. Pasting viscosities of wholemeal oat flour positively correlate with the hardness of oat-fortified noodles. The swelling power of oat flour is not correlated with either pasting viscosities of oat flour or noodle hardness. Longer amylopectin chains and the amount of longer amylose chains both control the pasting viscosities of oat flour, which in turn affect noodle texture. This provides new means, based on starch and ß-glucan molecular structure, to choose oats with optimal starch structure and ß-glucan content for targeted oat-fortified noodle quality.


Assuntos
Avena/metabolismo , Amido/química , Triticum/metabolismo , beta-Glucanas/química , Amilopectina/química , Amilose/química , Farinha/análise , Dureza , Viscosidade
17.
Int J Biol Macromol ; 136: 1125-1132, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31233794

RESUMO

Two varieties of barley samples were subjected to germination conditions to investigate the underlying mechanisms underpinning changes in molecular structure, chemical compositions and thermal properties of starch during this process. Starch thermal transitions were examined using differential scanning calorimetry, and the molecular fine structure of amylose and amylopectin were determined using size-exclusion chromatography and fluorophore-assisted carbohydrate electrophoresis, respectively. Both amylose and amylopectin chains were hydrolyzed during germination, but a preferential attack of amylopectin chains was observed with concomitant increases of relative amylose content, resulting in increased gelatinization temperatures (onset, peak, conclusion) and reduction in enthalpy change. Amylolytic enzyme activities increased during germination, resulting in decreased starch content. After malting, significant degradation of amylose chains followed by the reduction of gelatinization temperatures was seen. Roasting of pale malts was found to degrade starch and protein whilst completely stopping enzyme activities. The resulting coloured malts had extremely low starch enthalpy change due to the loss of amylopectin crystallinity at high temperature. This study provides insights into starch structural changes of barley throughout malting and roasting, which are determining factors for fermentable sugar production during mashing.


Assuntos
Germinação , Hordeum/metabolismo , Amido/química , Cerveja/microbiologia , Hordeum/crescimento & desenvolvimento , Cinética , Amido/metabolismo , Temperatura
18.
Anal Biochem ; 580: 30-35, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31181183

RESUMO

Barley is an important cereal grain used for beer brewing, animal feed, and human food consumption. Fungal disease can impact barley production, as it causes substantial yield loss and lowers seed quality. We used sequential window acquisition of all theoretical ions mass spectrometry (SWATH-MS) to measure and quantify the relative abundance of proteins within seeds of different barley varieties under various fungal pathogen burdens (ProteomeXchange Datasets PXD011303 and PXD014093). Fungal burden in the leaves and stems of barley resulted in changes to the seed proteome. However, these changes were minimal and showed substantial variation among barley samples infected with different pathogens. The limited effect of intrinsic disease resistance on the seed proteome is consistent with the main mediators of disease resistance being present in the leaves and stems of the plant. The seeds of barley varieties accredited for use as malt had higher levels of proteins associated with starch synthesis and beer quality. The proteomic workflows developed and implemented here have potential application in quality control, breeding and processing of barley, and other agricultural products.


Assuntos
Fungos/patogenicidade , Hordeum , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Austrália , Hordeum/metabolismo , Hordeum/microbiologia , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Proteoma , Proteômica/métodos , Sementes/metabolismo
19.
Food Microbiol ; 82: 82-88, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027823

RESUMO

Different methods have been applied in controlling contamination of foods and feeds by the carcinogenic fungal toxin, aflatoxin, but nevertheless the problem remains pervasive in developing countries. Curcumin is a natural polyphenolic compound from the spice turmeric (Curcuma longa L.) that has been identified as an efficient photosensitiser for inactivation of Aspergillus flavus conidia. Curcumin mediated photoinactivation of A. flavus has revealed the potential of this technology to be an effective method for reducing population density of the aflatoxin-producing fungus in foods. This study demonstrates the influence of pH and temperature on efficiency of photoinactivation of the fungus and how treating spore-contaminated maize kernels affects aflatoxin production. The results show the efficiency of curcumin mediated photoinactivation of fungal conidia and hyphae were not affected by temperatures between 15 and 35 °C or pH range of 1.5-9.0. The production of aflatoxin B1 was significantly lower (p < 0.05), with an average of 82.4 µg/kg as compared to up to 305.9 µg/kg observed in untreated maize kept under similar conditions. The results of this study indicate that curcumin mediated photosensitization can potentially be applied under simple environmental conditions to achieve significant reduction of post-harvest contamination of aflatoxin B1 in maize.


Assuntos
Aflatoxina B1/metabolismo , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/efeitos da radiação , Curcumina/farmacologia , Transtornos de Fotossensibilidade , Zea mays/microbiologia , Concentração de Íons de Hidrogênio , Hifas/efeitos dos fármacos , Hifas/efeitos da radiação , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/efeitos da radiação , Temperatura
20.
Carbohydr Polym ; 206: 583-592, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30553361

RESUMO

Ten barley samples containing varied protein contents were subject to malting followed by mashing to investigate molecular effects of both barley starch and starch- protein interactions on malting and mashing performances, and the underlying mechanism. Starch granular changes were examined using differential scanning calorimetry and scanning electron microscopy. The molecular fine structures of amylose and amylopectin from unmalted and malted grain were obtained using size-exclusion chromatography. The results showed that both amylose and amylopectin polymers were hydrolyzed at the same time during malting. Protein and amylose content in both unmalted and malted barley significant negatively correlated with fermentable sugar content after mashing. While protein content is currently the main criterion for choosing malting varieties, this study shows that information about starch molecular structure is also useful for determining the release of fermentable sugars, an important functional property. This provides brewers with some new methods to choose malting barley.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...