Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38224153

RESUMO

To identify proteins specific to the proximal ciliary axoneme, we used iTRAQ to compare short (~2 µm) and full-length (~11 µm) axonemes of Chlamydomonas. Known compoents of the proximal axoneme such as minor dynein heavy chains and LF5 kinase as well as the ciliary tip proteins FAP256 (CEP104) and EB1 were enriched in short axonemes whereas proteins present along the length of the axoneme were of similar abundance in both samples. The iTRAQ analysis revealed that FAP93, a protein of unknown function, and protein phosphatase 2A (PP2A) are enriched in the short axonemes. Consistently, immunoblots show enrichment of FAP93 and PP2A in short axonemes and immunofluorescence confirms the localization of FAP93 and enrichment of PP2A at the proximal axoneme. Ciliary regeneration reveals that FAP93 assembles continuously but more slowly than other axonemal structures and terminates at 1.03 µm in steady-state axonemes. The length of FAP93 assembly correlates with ciliary length, demonstrating ciliary length-dependent assembly of FAP93. Dikaryon rescue experiments show that FAP93 can assemble independently of IFT transport. In addition, FRAP analysis of GFP-tagged FAP93 demonstrates that FAP93 is stably anchored in axoneme. FAP93 may function as a scaffold for assembly of other specific proteins at the proximal axoneme.

2.
Cytoskeleton (Hoboken) ; 68(7): 363-72, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21692192

RESUMO

Analysis of Chlamydomonas axonemes revealed that the protein phosphatase, PP2A, is localized to the outer doublet microtubules and is implicated in regulation of dynein-driven motility. We tested the hypothesis that PP2A is localized to the axoneme by a specialized, highly conserved 55-kDa B-type subunit identified in the Chlamydomonas flagellar proteome. The B-subunit gene is defective in the motility mutant pf4. Consistent with our hypothesis, both the B- and C- subunits of PP2A fail to assemble in pf4 axonemes, while the dyneins and other axonemal structures are fully assembled in pf4 axonemes. Two pf4 intragenic revertants were recovered that restore PP2A to the axonemes and re-establish nearly wild-type motility. The revertants confirmed that the slow-swimming Pf4 phenotype is a result of the defective PP2A B-subunit. These results demonstrate that the axonemal B-subunit is, in part, an anchor protein required for PP2A localization and that PP2A is required for normal ciliary motility.


Assuntos
Axonema/metabolismo , Chlamydomonas/metabolismo , Proteína Fosfatase 2/metabolismo , Axonema/ultraestrutura , Chlamydomonas/ultraestrutura , Eletroforese em Gel de Poliacrilamida , Immunoblotting , Microscopia Eletrônica de Transmissão , Proteína Fosfatase 2/química , Subunidades Proteicas
3.
Mol Biol Cell ; 22(3): 342-53, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21148301

RESUMO

The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1ß motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1ß complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1ß complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1ß motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1ß motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding.


Assuntos
Axonema/metabolismo , Chlamydomonas/metabolismo , Dineínas/fisiologia , Flagelos/metabolismo , Proteínas de Plantas/fisiologia , Chlamydomonas/genética , Dineínas/química , Dineínas/genética , Dineínas/ultraestrutura , Microtúbulos/metabolismo , Fosforilação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/ultraestrutura , Estrutura Terciária de Proteína
4.
Curr Biol ; 20(5): 435-40, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20189389

RESUMO

How microtubule-associated motor proteins are regulated is not well understood. A potential mechanism for spatial regulation of motor proteins is provided by posttranslational modifications of tubulin subunits that form patterns on microtubules. Glutamylation is a conserved tubulin modification [1] that is enriched in axonemes. The enzymes responsible for this posttranslational modification, glutamic acid ligases (E-ligases), belong to a family of proteins with a tubulin tyrosine ligase (TTL) homology domain (TTL-like or TTLL proteins) [2]. We show that in cilia of Tetrahymena, TTLL6 E-ligases generate glutamylation mainly on the B-tubule of outer doublet microtubules, the site of force production by ciliary dynein. Deletion of two TTLL6 paralogs caused severe deficiency in ciliary motility associated with abnormal waveform and reduced beat frequency. In isolated axonemes with a normal dynein arm composition, TTLL6 deficiency did not affect the rate of ATP-induced doublet microtubule sliding. Unexpectedly, the same TTLL6 deficiency increased the velocity of microtubule sliding in axonemes that also lack outer dynein arms, in which forces are generated by inner dynein arms. We conclude that tubulin glutamylation on the B-tubule inhibits the net force imposed on sliding doublet microtubules by inner dynein arms.


Assuntos
Cílios/fisiologia , Dineínas/metabolismo , Tetrahymena/fisiologia , Tubulina (Proteína)/metabolismo , Fenômenos Biomecânicos , Regulação da Expressão Gênica/fisiologia , Microtúbulos , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Tetrahymena/citologia
5.
Mol Biol Cell ; 17(6): 2626-35, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16571668

RESUMO

Biochemical studies of Chlamydomonas flagellar axonemes revealed that radial spoke protein (RSP) 3 is an A-kinase anchoring protein (AKAP). To determine the physiological role of PKA anchoring in the axoneme, an RSP3 mutant, pf14, was transformed with an RSP3 gene containing a mutation in the PKA-binding domain. Analysis of several independent transformants revealed that the transformed cells exhibit an unusual phenotype: a fraction of the cells swim normally; the remainder of the cells twitch feebly or are paralyzed. The abnormal/paralyzed motility is not due to an obvious deficiency of radial spoke assembly, and the phenotype cosegregates with the mutant RSP3. We postulated that paralysis was due to failure in targeting and regulation of axonemal cAMP-dependent protein kinase (PKA). To test this, reactivation experiments of demembranated cells were performed in the absence or presence of PKA inhibitors. Importantly, motility in reactivated cell models mimicked the live cell phenotype with nearly equal fractions of motile and paralyzed cells. PKA inhibitors resulted in a twofold increase in the number of motile cells, rescuing paralysis. These results confirm that flagellar RSP3 is an AKAP and reveal that a mutation in the PKA binding domain results in unregulated axonemal PKA activity and inhibition of normal motility.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Chlamydomonas reinhardtii/fisiologia , Flagelos/fisiologia , Proteínas de Protozoários/fisiologia , Sequência de Aminoácidos , Animais , Movimento Celular , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Sequência Conservada , Dados de Sequência Molecular , Proteínas de Plantas , Regeneração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...