Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 1620, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005920

RESUMO

Widely regarded as an imminent threat to our oceans, ocean acidification has been documented in all oceanic basins. Projected changes in seawater chemistry will have catastrophic biotic effects due to ocean acidification hindering biogenic carbonate production, which will in turn lead to substantial changes in marine ecosystems. However, previous attempts to quantify the effect of acidification on planktonic calcifying organisms has relied on laboratory based studies with substantial methodological limitations. This has been overcome by comparing historic plankton tows from the seminal HMS Challenger Expedition (1872-1876) with the recent Tara Oceans expedition material (2009-2016). Nano CT-scans of selected equatorial Pacific Ocean planktonic foraminifera, have revealed that all modern specimens had up to 76% thinner shells than their historic counterparts. The "Challenger Revisited" project highlights the potential of historic ocean collections as a tool to investigate ocean acidification since the early Industrial Revolution. Further analyses of such biotic archives will enable researchers to quantify the effects of anthropogenic climate change across the globe.

2.
Sci Rep ; 8(1): 12226, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097596

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

3.
Sci Rep ; 8(1): 7973, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29789592

RESUMO

The Himalayan-sourced Ganges-Brahmaputra river system and the deep-sea Bengal Fan represent Earth's largest sediment-dispersal system. Here we present detrital zircon U-Pb provenance data from Miocene to middle Pleistocene Bengal Fan turbidites, and evaluate the influence of allogenic forcing vs. autogenic processes on signal propagation from the Himalaya to the deep sea. Our data record the strong tectonic and climatic forcing characteristic of the Himalayan system: after up to 2500 km of river transport, and >1400 km of transport by turbidity currents, the U-Pb record faithfully represents Himalayan sources. Moreover, specific U-Pb populations record Miocene integration of the Brahmaputra drainage with the Asian plate, as well as the rapid Plio-Pleistocene incision through, and exhumation of, the eastern Himalayan syntaxis. The record is, however, biased towards glacial periods when rivers were extended across the shelf in response to climate-forced sea-level fall, and discharged directly to slope canyons. Finally, only part of the record represents a Ganges or Brahmaputra provenance end-member, and most samples represent mixing from the two systems. Mixing or the lack thereof likely represents the fingerprint of autogenic delta-plain avulsions, which result in the two rivers delivering sediment separately to a shelf-margin canyon or merging together as they do today.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...