Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Hum Neurosci ; 3: 56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20046826

RESUMO

The decoding of visually presented line segments into letters, and letters into words, is critical to fluent reading abilities. Here we investigate the temporal dynamics of visual orthographic processes, focusing specifically on right hemisphere contributions and interactions between the hemispheres involved in the implicit processing of visually presented words, consonants, false fonts, and symbolic strings. High-density EEG was recorded while participants detected infrequent, simple, perceptual targets (dot strings) embedded amongst a of character strings. Beginning at 130 ms, orthographic and non-orthographic stimuli were distinguished by a sequence of ERP effects over occipital recording sites. These early latency occipital effects were dominated by enhanced right-sided negative-polarity activation for non-orthographic stimuli that peaked at around 180 ms. This right-sided effect was followed by bilateral positive occipital activity for false-fonts, but not symbol strings. Moreover the size of components of this later positive occipital wave was inversely correlated with the right-sided ROcc180 wave, suggesting that subjects who had larger early right-sided activation for non-orthographic stimuli had less need for more extended bilateral (e.g., interhemispheric) processing of those stimuli shortly later. Additional early (130-150 ms) negative-polarity activity over left occipital cortex and longer-latency centrally distributed responses (>300 ms) were present, likely reflecting implicit activation of the previously reported 'visual-word-form' area and N400-related responses, respectively. Collectively, these results provide a close look at some relatively unexplored portions of the temporal flow of information processing in the brain related to the implicit processing of potentially linguistic information and provide valuable information about the interactions between hemispheres supporting visual orthographic processing.

2.
Hum Brain Mapp ; 27(6): 478-87, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16161021

RESUMO

The intensity dependence of the local and remote effects of transcranial magnetic stimulation (TMS) on human motor cortex was characterized using positron-emission tomography (PET) measurements of regional blood flow (BF) and concurrent electromyographic (EMG) measurements of the motor-evoked potential (MEP). Twelve normal volunteers were studied by applying 3 Hz TMS to the hand region of primary motor cortex (M1(hand)). Three stimulation intensities were used: 75%, 100%, and 125% of the motor threshold (MT). MEP amplitude increased nonlinearly with increasing stimulus intensity. The rate of rise in MEP amplitude was greater above MT than below. The hemodynamic response in M1(hand) was an increase in BF. Hemodynamic variables quantified for M1(hand) included value-normalized counts (VNC), intensity (z-score), and extent (mm(3)). All three hemodynamic response variables increased nonlinearly with stimulus intensity, closely mirroring the MEP intensity-response function. VNC was the hemodynamic response variable which showed the most significant effect of TMS intensity. VNC correlated strongly with MEP amplitude, both within and between subjects. Remote regions showed varying patterns of intensity response, which we interpret as reflecting varying levels of neuronal excitability and/or functional coupling in the conditions studied.


Assuntos
Mapeamento Encefálico/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Córtex Motor/irrigação sanguínea , Córtex Motor/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
3.
Hum Brain Mapp ; 25(1): 185-98, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15846810

RESUMO

Coordinate-based, voxel-wise meta-analysis is an exciting recent addition to the human functional brain mapping literature. In view of the critical importance of selection criteria for any valid meta-analysis, a taxonomy of experimental design should be an important tool for aiding in the design of rigorous meta-analyses. The coding scheme of experimental designs developed for and implemented within the BrainMap database provides a candidate taxonomy. In this study, the BrainMap experimental-design taxonomy is described and evaluated by comparing taxonomy fields to data-filtering choices made by subject-matter experts carrying out meta-analyses of the functional imaging literature. Fifteen publications reporting a total of 46 voxel-wise meta-analyses were included in this assessment. Collectively these 46 meta-analyses pooled data from 351 publications, selected for experimental similarity within each meta-analysis. Filter implementations within BrainMap were graded by ease-of-use (A-C) and by stage-of-use (1-3). Quality filters and content filters were tabulated separately. Quality filters required for data entry into BrainMap were classed as mandatory (five filters), being above the use grading system. All authors spontaneously adopted the five mandatory filters in constructing their meta-analysis, indicating excellent agreement on data quality among authors and between authors and the BrainMap development team. Two non-mandatory quality filters (group size and imaging modality) were applied by all authors; both were Stage 1, Grade A filters. Field-of-view filters were the least-accessible quality filters (Stage 3, Grade C); two field-of-view filters were applied by six and four authors, respectively. Authors made a total of 115 content-filter choices. Of these, 78 (68%) were Stage 1, Grade A filters; 16 (14%) were Stage 2, Grade A; and 21 (18%) were Stage 2, Grade C. No author-applied filter was absent from the taxonomy.


Assuntos
Mapeamento Encefálico/métodos , Metanálise como Assunto , Projetos de Pesquisa , Humanos , Projetos de Pesquisa/estatística & dados numéricos
4.
Hum Brain Mapp ; 22(1): 1-14, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15083522

RESUMO

A model to explain the orientation selectivity of the neurophysiologic effects of electric-field transients applied to cerebral cortex is proposed and supported with neuroimaging evidence. Although it is well known that transcranial magnetic stimulation (TMS) excites cerebral cortex in an orientation-selective manner, a neurophysiologically compelling explanation of this phenomenon has been lacking. It is generally presumed that TMS-induced excitation is mediated by horizontal fibers in the cortical surfaces nearest to the stimulating coil, i.e., at the gyral crowns. No evidence exists, however, that horizontal fibers are orientation selective either anatomically or physiologically. We used positron emission tomography to demonstrate that TMS-induced cortical activation is selectively sulcal. This observation allows the well-established columnar organization of cerebral cortex to be invoked to explain the observed orientation selectivity. In addition, Rushton's cosine principle can used to model stimulation efficacy for an electrical field applied at any cortical site at any intensity and in any orientation.


Assuntos
Mapeamento Encefálico , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Movimento/fisiologia , Adulto , Estimulação Elétrica , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Magnetismo , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada de Emissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...