Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cognition ; 245: 105723, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38262271

RESUMO

According to predictive processing theories, vision is facilitated by predictions derived from our internal models of what the world should look like. However, the contents of these models and how they vary across people remains unclear. Here, we use drawing as a behavioral readout of the contents of the internal models in individual participants. Participants were first asked to draw typical versions of scene categories, as descriptors of their internal models. These drawings were converted into standardized 3d renders, which we used as stimuli in subsequent scene categorization experiments. Across two experiments, participants' scene categorization was more accurate for renders tailored to their own drawings compared to renders based on others' drawings or copies of scene photographs, suggesting that scene perception is determined by a match with idiosyncratic internal models. Using a deep neural network to computationally evaluate similarities between scene renders, we further demonstrate that graded similarity to the render based on participants' own typical drawings (and thus to their internal model) predicts categorization performance across a range of candidate scenes. Together, our results showcase the potential of a new method for understanding individual differences - starting from participants' personal expectations about the structure of real-world scenes.


Assuntos
Individualidade , Reconhecimento Visual de Modelos , Humanos , Redes Neurais de Computação , Percepção Visual , Estimulação Luminosa/métodos
2.
Iperception ; 12(3): 20416695211017924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34104382

RESUMO

Glass patterns (GPs) have been widely employed to investigate the mechanisms underlying processing of global form from locally oriented cues. The current study aimed to psychophysically investigate the level at which global orientation is extracted from translational GPs using the tilt after-effect (TAE) and manipulating the spatiotemporal properties of the adapting pattern. We adapted participants to translational GPs and tested with sinewave gratings. In Experiment 1, we investigated whether orientation-selective units are sensitive to the temporal frequency of the adapting GP. We used static and dynamic translational GPs, with dynamic GPs refreshed at different temporal frequencies. In Experiment 2, we investigated the spatial frequency selectivity of orientation-selective units by manipulating the spatial frequency content of the adapting GPs. The results showed that the TAE peaked at a temporal frequency of ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are sensitive to high temporal frequencies. In addition, TAE from translational GPs peaked at lower spatial frequencies than the dipoles' spatial constant. These effects are consistent with form-motion integration at low and intermediate levels of visual processing.

3.
Perception ; 48(4): 286-315, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30885042

RESUMO

Glass patterns (GPs) consist of randomly distributed dot pairs (dipoles) whose orientations are determined by specific geometric transforms. We investigated the role of visuospatial attention in the processing of global form from GPs by measuring the effect of distraction on adaptation to GPs. In the nondistracted condition, observers were adapted to coherent GPs. After the adaptation period, they were presented with a test GP divided in two halves along the vertical and were required to judge which side of the test GP was more coherent. In the attention-distracted condition, a high-load rapid serial visual presentation task was performed during the adapting period. The magnitude of the form after-effect was measured using a technique that measures the coherence level at which the test GP appears random. The rationale was that if attention has a modulatory effect on the spatial summation of dipoles, in the attention-distracted condition, we should expect a weaker form after-effect. However, the results showed stronger form after-effect in the attention-distracted condition than in the nondistracted condition, suggesting that distraction during adaptation increases the strength of form adaptation. Additional experiments suggested that distraction may reduce the spatial suppression from large-scale textures, strengthening the spatial summation of local-oriented signals.


Assuntos
Atenção/fisiologia , Pós-Efeito de Figura/fisiologia , Percepção de Forma/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...