Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 151(5): 3255, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35649919

RESUMO

Teaching science subjects such as acoustics to youth or the general public can be facilitated by illustrating physical phenomena or scientific issues using fun experiences. A few years ago, our team developed a smartphone application named NoiseCapture with the aim of offering to anyone the opportunity to measure their sound environment and to share their geolocated measurements with the community in order to build a collective noise map. Since then, NoiseCapture team members have experimented with numerous interventions in schools or scientific events for the general public based on the app to explain not only societal and environmental issues related to noise but also to teach acoustic notions and to address technical and scientific topics associated with sound measurement. This paper describes some of the interventions implemented, in particular, in a school context through training courses given to middle school and university students, as well as teachers of secondary school, that focused on basic knowledge of buildings and environmental acoustics, on the practice of acoustic measurement, and on noise mapping. Some examples of interventions with the general public are also presented that were mostly integrated into scientific events.


Assuntos
Aplicativos Móveis , Acústica , Adolescente , Humanos , Ruído , Instituições Acadêmicas , Smartphone
2.
J Acoust Soc Am ; 150(2): 1286, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34470260

RESUMO

In the context of building acoustics and the acoustic diagnosis of an existing room, it introduces and investigates a new approach to estimate the mean absorption coefficients solely from a room impulse response (RIR). This inverse problem is tackled via virtually supervised learning, namely, the RIR-to-absorption mapping is implicitly learned by regression on a simulated dataset using artificial neural networks. Simple models based on well-understood architectures are the focus of this work. The critical choices of geometric, acoustic, and simulation parameters, which are used to train the models, are extensively discussed and studied while keeping in mind the conditions that are representative of the field of building acoustics. Estimation errors from the learned neural models are compared to those obtained with classical formulas that require knowledge of the room's geometry and reverberation times. Extensive comparisons made on a variety of simulated test sets highlight different conditions under which the learned models can overcome the well-known limitations of the diffuse sound field hypothesis underlying these formulas. Results obtained on real RIRs measured in an acoustically configurable room show that at 1 kHz and above, the proposed approach performs comparably to classical models when reverberation times can be reliably estimated and continues to work even when they cannot.


Assuntos
Acústica , Som , Simulação por Computador , Espectrografia do Som , Aprendizado de Máquina Supervisionado
3.
JASA Express Lett ; 1(5): 051601, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154108

RESUMO

Previous studies showed that the reverberant field in elongated rooms is governed by non-homogeneous diffusion. The objective of this study is to physically interpret this phenomenon by considering the dynamics of the sound particles. Starting from the original diffusion theory, a quantity that can be interpreted as a "local" mean free path has been proposed and computed from the paths of the propagating particles. Based on the proportionality relationship between the mean free path and the diffusion coefficient, the spatial distribution of the latter could be estimated and successfully compared with a direct estimation using the Fick's law.


Assuntos
Som , Difusão
4.
J Acoust Soc Am ; 140(4): 2659, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27794355

RESUMO

Over the last 20 years, a statistical acoustic model has been developed to predict the reverberant sound field in buildings. This model is based on the assumption that the propagation of the reverberant sound field follows a transport process and, as an approximation, a diffusion process that can be easily solved numerically. This model, initially designed and validated for rooms with purely diffuse reflections, is extended in the present study to mixed reflections, with a proportion of specular and diffuse reflections defined by a scattering coefficient. The proposed mathematical developments lead to an analytical expression of the diffusion constant that is a function of the scattering coefficient, but also on the absorption coefficient of the walls. The results obtained with this extended diffusion model are then compared with the classical diffusion model, as well as with a sound particles tracing approach considering mixed wall reflections. The comparison shows a good agreement for long rooms with uniform low absorption (α = 0.01) and uniform scattering. For a larger absorption (α = 0.1), the agreement is moderate, due to the fact that the proposed expression of the diffusion coefficient does not vary spatially. In addition, the proposed model is for now limited to uniform diffusion and should be extended in the future to more general cases.

5.
J Acoust Soc Am ; 123(6): 4040-3, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18537354

RESUMO

This paper presents an extension of a diffusion model for room acoustics to handle the atmospheric attenuation. This phenomenon is critical at high frequencies and in large rooms to obtain correct acoustic predictions. An additional term is introduced in the diffusion equation as well as in the diffusion constant, in order to take the atmospheric attenuation into account. The modified diffusion model is then compared with the statistical theory and a cone-tracing software. Three typical room-acoustic configurations are investigated: a proportionate room, a long room and a flat room. The modified diffusion model agrees well with the statistical theory (when applicable, as in proportionate rooms) and with the cone-tracing software, both in terms of sound pressure levels and reverberation times.


Assuntos
Acústica , Atmosfera/análise , Difusão , Som , Simulação por Computador , Modelos Biológicos , Modelos Teóricos , Pressão , Reprodutibilidade dos Testes
6.
J Acoust Soc Am ; 123(6): 4261-71, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18537377

RESUMO

In this paper, a modification of the diffusion model for room acoustics is proposed to account for sound transmission between two rooms, a source room and an adjacent room, which are coupled through a partition wall. A system of two diffusion equations, one for each room, together with a set of two boundary conditions, one for the partition wall and one for the other walls of a room, is obtained and numerically solved. The modified diffusion model is validated by numerical comparisons with the statistical theory for several coupled-room configurations by varying the coupling area surface, the absorption coefficient of each room, and the volume of the adjacent room. An experimental comparison is also carried out for two coupled classrooms. The modified diffusion model results agree very well with both the statistical theory and the experimental data. The diffusion model can then be used as an alternative to the statistical theory, especially when the statistical theory is not applicable, that is, when the reverberant sound field is not diffuse. Moreover, the diffusion model allows the prediction of the spatial distribution of sound energy within each coupled room, while the statistical theory gives only one sound level for each room.


Assuntos
Acústica , Materiais de Construção , Arquitetura de Instituições de Saúde , Localização de Som , Som , Difusão , Humanos , Modelos Biológicos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...