Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 209: 117950, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34920316

RESUMO

While zero liquid discharge (ZLD) wetlands have been successfully used for domestic wastewater treatment, adapting this technology to treat other wastewaters such as leachate could be very attractive for some industries concerned with meeting increasingly stringent environmental regulations. Leachate treatment typically implies large volume of water that are entirely dependent on rainfall and therefore highly variable both throughout the year and between years. Current design guidelines for zero discharge willow systems limit system flexibility because they are based on rough theoretical estimates of evapotranspiration. This discuss the applicability of ZLD treatment through a willow bed evapotranspiration (ET) applied to the treatment of industrial leachate that has high and variable hydraulic loading rate and low contaminant and salt concentration. We propose a base design and, through detailed and long-term hydrological modeling of such a treatment system, investigate how various design and management decisions can affect sizing, efficiency, and overall feasibility of the technology. We showed that considering ET optimization factors (e.g. fertilization and organic substrate) was essential for ZLD to be achieved over a 20-year period in northern continental humid climate and that the ratio between cumulative annual ET of the willow bed and cumulative annual rainfall should be at least 1.5. When varying the leachate collection area, it was found that a ratio of willow bed area to collection area between 0.5 and 0.7 should be expected for an optimized design in this specific climate, were land area and storage volume remain the most limiting factors. Regarding storage volume, several management options can be applied to reduce the volume of storage required. We also highlight that a risk attenuation strategy should always be included in the design of a ZLD wetland system. Our study suggests that ZLD wetlands constitute a green technology that represents a serious alternative treatment method for pretreated leachate, while offering many benefits such as low maintenance and energy costs, valorization of contaminants such as nitrogen or phosphorus through biomass production, and, most importantly, zero contaminant discharge to the environment. Finally, we propose future research opportunities and other possible applications for further development of the technology.

2.
Plants (Basel) ; 9(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327610

RESUMO

Pentachlorophenol and chromated copper arsenate (CCA) have been used worldwide as wood preservatives, but these compounds can toxify ecosystems when they leach into the soil and water. This study aimed to evaluate the capacity of four treatment wetland macrophytes, Phalaris arundinacea, Typha angustifolia, and two subspecies of Phragmites australis, to tolerate and treat leachates containing wood preservatives. The experiment was conducted using 96 plant pots in 12 tanks filled with three leachate concentrations compared to uncontaminated water. Biomass production and bioaccumulation were measured after 35 and 70 days of exposure. There were no significant effects of leachate contamination concentration on plant biomass for any species. No contaminants were detected in aboveground parts of the macrophytes, precluding their use for phytoextraction within the tested contamination levels. However, all species accumulated As and chlorinated phenols in belowground parts, and this accumulation was more prevalent under a more concentrated leachate. Up to 0.5 mg pentachlorophenol/kg (from 81 µg/L in the leachate) and 50 mg As/kg (from 330 µg/L in the leachate) were accumulated in the belowground biomass. Given their high productivity and tolerance to the contaminants, the tested macrophytes showed phytostabilization potential and could enhance the degradation of phenols from leachates contaminated with wood preservatives in treatment wetlands.

3.
Int J Phytoremediation ; 22(3): 295-304, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31475577

RESUMO

Plant species selection is an important criterion for improving treatment wetland performance. The aim of this work was to evaluate removal efficiency and potential uses of woody species in treatment wetlands during the establishment year. Plant development, removal efficiency and evapotranspiration rate of five woody species (Salix interior, Salix miyabeana, Sambucus canadensis, Myrica gale, Acer saccharinum) and four herbaceous taxa typically used in treatment wetlands (Typha angustifolia, Phragmites australis australis, Phragmites australis americanus, Phalaris arundinacea) were compared in a mesocosm-scale study during one growing season. Woody species showed significantly slower growth, but displayed several characteristics of interest for treatment wetland applications: good adaptation to wetlands conditions; high organic matter removal (76-88%); high nutrient accumulation in tissues and high evapotranspiration capacity. During the establishment year, herbaceous species showed greater biomass development (above- and belowground parts), higher evapotranspiration rate (>3.84 L m-2 d-1 compared to <3.23 L m-2 d-1 for woody species) and overall pollutant removal efficiency. These characteristics confirm the high efficiency of treatment wetlands planted with herbaceous species even in the first growing season. However, given their greater potential biomass development, woody species could represent an excellent alternative for improving treatment wetlands long-term performance.


Assuntos
Typhaceae , Áreas Alagadas , Biodegradação Ambiental , Poaceae , Eliminação de Resíduos Líquidos
4.
J Environ Manage ; 246: 526-537, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202017

RESUMO

Willows are increasingly used for a wide range of environmental projects, including biomass production, leachate treatment, riparian buffers and treatment wetlands. Evapotranspiration (ET), assumed to be high for most willow species used in environmental projects, affects hydrological cycles and is of key interest for project managers working with willows. Here, we present a comprehensive review of ET rates provided in the literature for the genus Salix. We aim to summarize current knowledge of willow ET and analyze its variability depending on context. We compiled and analyzed data from 57 studies, covering 16 countries, 19 willow species and dozens of cultivars. We found a mean reported ET rate of 4.6 ±â€¯4.2 mm/d, with minimum and maximum values of 0.7 and 22.7 mm/d respectively. Although results reported here varied significantly between some species, overall interspecific standard deviation (±3.6 mm/d) was similar to intraspecific variation (±3.3 mm/d) calculated for S. viminalis, suggesting a greater influence of the growing context on ET than species identity. In terms of environmental and management variables, water supply, fertilization and contamination were identified as driving factors of ET across willow species. Effects of root age, experimental context, planting density and soil type were more nuanced. Our findings provide synthetic data regarding willow ET. We encourage practitioners who use ET data from the literature to be aware of the main drivers of ET and to consider the influence of the experimental aspects of a study in order to interpret data accurately and improve project planning.


Assuntos
Salix , Biomassa , Plantas , Solo , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...