Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38891067

RESUMO

Rapid information processing in the central nervous system requires the myelination of axons by oligodendrocytes. The transcription factor Sox2 and its close relative Sox3 redundantly regulate the development of myelin-forming oligodendrocytes, but little is known about the underlying molecular mechanisms. Here, we characterized the expression profile of cultured oligodendroglial cells during early differentiation and identified Bcas1, Enpp6, Zfp488 and Nkx2.2 as major downregulated genes upon Sox2 and Sox3 deletion. An analysis of mice with oligodendrocyte-specific deletion of Sox2 and Sox3 validated all four genes as downstream targets in vivo. Additional functional assays identified regulatory regions in the vicinity of each gene that are responsive to and bind both Sox proteins. Bcas1, Enpp6, Zfp488 and Nkx2.2 therefore likely represent direct target genes and major effectors of Sox2 and Sox3. Considering the preferential expression and role of these genes in premyelinating oligodendrocytes, our findings suggest that Sox2 and Sox3 impact oligodendroglial development at the premyelinating stage with Bcas1, Enpp6, Zfp488 and Nkx2.2 as their major effectors.


Assuntos
Diferenciação Celular , Proteína Homeobox Nkx-2.2 , Oligodendroglia , Fatores de Transcrição SOXB1 , Fatores de Transcrição , Animais , Camundongos , Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Oligodendroglia/metabolismo , Oligodendroglia/citologia , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXC/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Cells ; 12(12)2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37371026

RESUMO

Oligodendrocyte development is accompanied by defined changes in the state of chromatin that are brought about by chromatin remodeling complexes. Many such remodeling complexes exist, but only a few have been studied for their impact on oligodendrocytes as the myelin-forming cells of the central nervous system. To define the role of the PBAF remodeling complex, we focused on Pbrm1 as an essential subunit of the PBAF complex and specifically deleted it in the oligodendrocyte lineage at different times of development in the mouse. Deletion in late oligodendrocyte progenitor cells did not lead to substantial changes in the ensuing differentiation and myelination processes. However, when Pbrm1 loss had already occurred in oligodendrocyte progenitor cells shortly after their specification, fewer cells entered the pre-myelinating state. The reduction in pre-myelinating cells later translated into a comparable reduction in myelinating oligodendrocytes. We conclude that Pbrm1 and, by inference, the activity of the PBAF complex is specifically required at the transition from oligodendrocyte progenitor to pre-myelinating oligodendrocyte and ensures the generation of normal numbers of myelinating oligodendrocytes.


Assuntos
Bainha de Mielina , Oligodendroglia , Animais , Camundongos , Diferenciação Celular/fisiologia , Sistema Nervoso Central , Bainha de Mielina/fisiologia , Células-Tronco
3.
Int J Oral Sci ; 15(1): 16, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024457

RESUMO

The cranial neural crest plays a fundamental role in orofacial development and morphogenesis. Accordingly, mutations with impact on the cranial neural crest and its development lead to orofacial malformations such as cleft lip and palate. As a pluripotent and dynamic cell population, the cranial neural crest undergoes vast transcriptional and epigenomic alterations throughout the formation of facial structures pointing to an essential role of factors regulating chromatin state or transcription levels. Using CRISPR/Cas9-guided genome editing and conditional mutagenesis in the mouse, we here show that inactivation of Kat5 or Ep400 as the two essential enzymatic subunits of the Tip60/Ep400 chromatin remodeling complex severely affects carbohydrate and amino acid metabolism in cranial neural crest cells. The resulting decrease in protein synthesis, proliferation and survival leads to a drastic reduction of cranial neural crest cells early in fetal development and a loss of most facial structures in the absence of either protein. Following heterozygous loss of Kat5 in neural crest cells palatogenesis was impaired. These findings point to a decisive role of the Tip60/Ep400 chromatin remodeling complex in facial morphogenesis and lead us to conclude that the orofacial clefting observed in patients with heterozygous KAT5 missense mutations is at least in part due to disturbances in the cranial neural crest.


Assuntos
Fenda Labial , Fissura Palatina , Animais , Camundongos , Montagem e Desmontagem da Cromatina , Fenda Labial/genética , Fissura Palatina/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Crista Neural/metabolismo , Crânio , Fatores de Transcrição/metabolismo
4.
Glia ; 71(8): 1890-1905, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37017184

RESUMO

The high-mobility-group domain-containing transcription factor Sox9 confers glial competence to neuroepithelial precursors in the developing central nervous system and is an important determinant of astroglial and oligodendroglial specification. In oligodendroglial cells, it remains expressed in oligodendrocyte progenitor cells (OPCs) of the developing nervous system, but is shut off in differentiating oligodendrocytes as well as in OPCs that persist in the adult nervous system. To better understand the role of Sox9 in OPCs, we generated mouse models that allowed oligodendroglial expression of a Sox9 transgene during development or in the adult. With transgene expression beginning in the last trimester of pregnancy, the number of OPCs increased dramatically, followed by comparable gains in the number of pre-myelinating and myelinating oligodendrocytes as assessed by marker gene expression. This argues that Sox9 boosts oligodendrogenesis during ontogenetic development at all stages, including terminal oligodendrocyte differentiation. When Sox9 transgene expression started in the adult, many transgene-expressing OPCs failed to maintain their progenitor cell identity and instead converted into myelinating oligodendrocytes. As infrequent and inefficient differentiation of adult OPCs is one of the main obstacles to effective remyelination in demyelinating diseases such as Multiple Sclerosis, increased Sox9 levels in adult OPCs may substantially increase their remyelination capacity.


Assuntos
Esclerose Múltipla , Oligodendroglia , Camundongos , Animais , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Neuroglia/metabolismo , Esclerose Múltipla/metabolismo , Células-Tronco/metabolismo , Bainha de Mielina/metabolismo
5.
Nucleic Acids Res ; 50(20): 11509-11528, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318265

RESUMO

Differentiated oligodendrocytes produce myelin and thereby ensure rapid nerve impulse conduction and efficient information processing in the vertebrate central nervous system. The Krüppel-like transcription factor KLF9 enhances oligodendrocyte differentiation in culture, but appears dispensable in vivo. Its mode of action and role within the oligodendroglial gene regulatory network are unclear. Here we show that KLF9 shares its expression in differentiating oligodendrocytes with the closely related KLF13 protein. Both KLF9 and KLF13 bind to regulatory regions of genes that are important for oligodendrocyte differentiation and equally recognized by the central differentiation promoting transcription factors SOX10 and MYRF. KLF9 and KLF13 physically interact and synergistically activate oligodendrocyte-specific regulatory regions with SOX10 and MYRF. Similar to KLF9, KLF13 promotes differentiation and myelination in primary oligodendroglial cultures. Oligodendrocyte differentiation is also altered in KLF13-deficient mice as demonstrated by a transiently reduced myelin gene expression during the first postnatal week. Considering mouse phenotypes, the similarities in expression pattern and genomic binding and the behaviour in functional assays, KLF9 and KLF13 are important and largely redundant components of the gene regulatory network in charge of oligodendrocyte differentiation and myelination.


Assuntos
Fatores de Transcrição Kruppel-Like , Bainha de Mielina , Oligodendroglia , Fatores de Transcrição SOXE , Animais , Camundongos , Diferenciação Celular/genética , Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo
6.
Sci Rep ; 12(1): 2651, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173232

RESUMO

Myelin sheath formation in the peripheral nervous system and the ensuing saltatory conduction rely on differentiated Schwann cells. We have previously shown that transition of Schwann cells from an immature into a differentiated state requires Brg1 that serves as the central energy generating subunit in two related SWI/SNF-type chromatin remodelers, the BAF and the PBAF complex. Here we used conditional deletion of Pbrm1 to selectively interfere with the PBAF complex in Schwann cells. Despite efficient loss of Pbrm1 early during lineage progression, we failed to detect any substantial alterations in the number, proliferation or survival of immature Schwann cells as well as in their rate and timing of terminal differentiation. As a consequence, postnatal myelin formation in peripheral nerves appeared normal. There were no inflammatory alterations in the nerve or other signs of a peripheral neuropathy. We conclude from our study that Pbrm1 and very likely the PBAF complex are dispensable for proper Schwann cell development and that Schwann cell defects previously observed upon Brg1 deletion are mostly attributable to altered or absent function of the BAF complex.


Assuntos
Diferenciação Celular/genética , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/fisiologia , Células de Schwann/fisiologia , Fatores de Transcrição/fisiologia , Animais , Linhagem da Célula/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , DNA Helicases/genética , Deleção de Genes , Camundongos , Bainha de Mielina/fisiologia , Proteínas Nucleares/genética , Nervos Periféricos/fisiologia , Fatores de Transcrição/genética
8.
Sci Rep ; 11(1): 14044, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234180

RESUMO

The three SoxD proteins, Sox5, Sox6 and Sox13, represent closely related transcription factors with important roles during development. In the developing nervous system, SoxD proteins have so far been primarily studied in oligodendroglial cells and in interneurons of brain and spinal cord. In oligodendroglial cells, Sox5 and Sox6 jointly maintain the precursor state, interfere with terminal differentiation, and thereby ensure the proper timing of myelination in the central nervous system. Here we studied the role of SoxD proteins in Schwann cells, the functional counterpart of oligodendrocytes in the peripheral nervous system. We show that Schwann cells express Sox5 and Sox13 but not Sox6. Expression was transient and ceased with the onset of terminal differentiation. In mice with early Schwann cell-specific deletion of both Sox5 and Sox13, embryonic Schwann cell development was not substantially affected and progressed normally into the promyelinating stage. However, there was a mild and transient delay in the myelination of the peripheral nervous system of these mice. We therefore conclude that SoxD proteins-in stark contrast to their action in oligodendrocytes-promote differentiation and myelination in Schwann cells.


Assuntos
Bainha de Mielina/metabolismo , Neurogênese/genética , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sistema Nervoso Periférico/metabolismo , Fatores de Transcrição SOXD/deficiência , Células de Schwann/metabolismo , Animais , Autoantígenos/genética , Biomarcadores , Deleção de Genes , Expressão Gênica , Imuno-Histoquímica , Camundongos , Família Multigênica , Bainha de Mielina/ultraestrutura , Especificidade de Órgãos , Fatores de Transcrição SOXD/genética , Células de Schwann/ultraestrutura
9.
Glia ; 69(6): 1464-1477, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33566433

RESUMO

The transcription factor Sox10 is an essential regulator of genes that code for structural components of the myelin sheath and for lipid metabolic enzymes in both types of myelinating glia in the central and peripheral nervous systems. In an attempt to characterize additional Sox10 target genes in Schwann cells, we identified in this study a strong influence of Sox10 on the expression of genes associated with adhesion in the MSC80 Schwann cell line. These included the genes for Gliomedin, Neuronal cell adhesion molecule and Neurofascin that together constitute essential Schwann cell contributions to paranode and node of Ranvier. Using bioinformatics and molecular biology techniques we provide evidence that Sox10 directly activates these genes by binding to conserved regulatory regions. For activation, Sox10 cooperates with Krox20, a transcription factor previously identified as the central regulator of Schwann cell myelination. Both the activating function of Sox10 as well as its cooperation with Krox20 were confirmed in vivo. We conclude that the employment of Sox10 and Krox20 as regulators of structural myelin sheath components and genes associated with the node of Ranvier is one way of ensuring a biologically meaningful coordinated formation of both structures during peripheral myelination.


Assuntos
Células de Schwann , Linhagem Celular , Bainha de Mielina , Neuroglia , Fatores de Transcrição/genética
10.
Front Mol Neurosci ; 13: 567084, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192292

RESUMO

Desmin, the major intermediate filament (IF) protein in muscle cells, interlinks neighboring myofibrils and connects the whole myofibrillar apparatus to myonuclei, mitochondria, and the sarcolemma. However, desmin is also known to be enriched at postsynaptic membranes of neuromuscular junctions (NMJs). The pivotal role of the desmin IF cytoskeletal network is underscored by the fact that over 120 mutations of the human DES gene cause hereditary and sporadic myopathies and cardiomyopathies. A subgroup of human desminopathies comprises autosomal recessive cases resulting in the complete abolition of desmin protein. In these patients, who display a more severe phenotype than the autosomal dominant cases, it has been reported that some individuals also suffer from a myasthenic syndrome in addition to the classical occurrence of myopathy and cardiomyopathy. Since further studies on the NMJ pathology are hampered by the lack of available human striated muscle biopsy specimens, we exploited homozygous desmin knock-out mice which closely mirror the striated muscle pathology of human patients lacking desmin protein. Here, we report on the impact of the lack of desmin on the structure and function of NMJs and the transcription of genes coding for postsynaptic proteins. Desmin knock-out mice display a fragmentation of NMJs in soleus, but not in the extensor digitorum longus muscle. Moreover, soleus muscle fibers show larger NMJs. Further, transcription levels of acetylcholine receptor (AChR) genes are increased in muscles from desmin knock-out mice, especially of the AChRγ subunit, which is known as a marker of muscle fiber regeneration. Electrophysiological recordings depicted a pathological decrement of nerve-dependent endplate potentials and an increased rise time of the nerve-independent miniature endplate potentials. The latter appears related to the fragmentation of NMJs in desmin knockout mice. Our study highlights the essential role of desmin for the structural and functional integrity of mammalian NMJs.

11.
Sci Rep ; 10(1): 17807, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082503

RESUMO

The high mobility group-domain containing transcription factor Sox10 is an essential regulator of developmental processes and homeostasis in the neural crest, several neural crest-derived lineages and myelinating glia. Recent studies have also implicated Sox10 as an important factor in mammary stem and precursor cells. Here we employ a series of mouse mutants with constitutive and conditional Sox10 deficiencies to show that Sox10 has multiple functions in the developing mammary gland. While there is no indication for a requirement of Sox10 in the specification of the mammary placode or descending mammary bud, it is essential for both the prenatal hormone-independent as well as the pubertal hormone-dependent branching of the mammary epithelium and for proper alveologenesis during pregnancy. It furthermore acts in a dosage-dependent manner. Sox10 also plays a role during the involution process at the end of the lactation period. Whereas its effect on epithelial branching and alveologenesis are likely causally related to its function in mammary stem and precursor cells, this is not the case for its function during involution where Sox10 seems to work at least in part through regulation of the miR-424(322)/503 cluster.


Assuntos
Epitélio/fisiologia , Glândulas Mamárias Animais/fisiologia , Morfogênese/fisiologia , Crista Neural/fisiologia , Fatores de Transcrição SOXE/metabolismo , Animais , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Homeostase , Lactação , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Mutação/genética , Fatores de Transcrição SOXE/genética
12.
Nucleic Acids Res ; 48(16): 8959-8976, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32672815

RESUMO

Schwann cells are the nerve ensheathing cells of the peripheral nervous system. Absence, loss and malfunction of Schwann cells or their myelin sheaths lead to peripheral neuropathies such as Charcot-Marie-Tooth disease in humans. During Schwann cell development and myelination chromatin is dramatically modified. However, impact and functional relevance of these modifications are poorly understood. Here, we analyzed histone H2B monoubiquitination as one such chromatin modification by conditionally deleting the Rnf40 subunit of the responsible E3 ligase in mice. Rnf40-deficient Schwann cells were arrested immediately before myelination or generated abnormally thin, unstable myelin, resulting in a peripheral neuropathy characterized by hypomyelination and progressive axonal degeneration. By combining sequencing techniques with functional studies we show that H2B monoubiquitination does not influence global gene expression patterns, but instead ensures selective high expression of myelin and lipid biosynthesis genes and proper repression of immaturity genes. This requires the specific recruitment of the Rnf40-containing E3 ligase by Egr2, the central transcriptional regulator of peripheral myelination, to its target genes. Our study identifies histone ubiquitination as essential for Schwann cell myelination and unravels new disease-relevant links between chromatin modifications and transcription factors in the underlying regulatory network.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/fisiologia , Neuropatia Hereditária Motora e Sensorial/metabolismo , Histonas/metabolismo , Sistema Nervoso Periférico/metabolismo , Células de Schwann/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Sistema Nervoso Periférico/patologia , Ratos , Células de Schwann/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
Nucleic Acids Res ; 48(9): 4839-4857, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32266943

RESUMO

Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.


Assuntos
Fator de Transcrição 2 de Oligodendrócitos/genética , Oligodendroglia/citologia , Fator de Transcrição 4/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Células Cultivadas , Dimerização , Feminino , Deleção de Genes , Células HEK293 , Humanos , Masculino , Camundongos , Bainha de Mielina/fisiologia , Oligodendroglia/metabolismo , Ratos Wistar
14.
Nucleic Acids Res ; 48(3): 1254-1270, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31828317

RESUMO

Oligodendrocytes generate myelin in the vertebrate central nervous system and thus ensure rapid propagation of neuronal activity. Their development is controlled by a network of transcription factors that function as determinants of cell identity or as temporally restricted stage-specific regulators. The continuously expressed Sox10 and Myrf, a factor induced during late development, are particularly important for terminal differentiation. How these factors function together mechanistically and influence each other, is not well understood. Here we show that Myrf not only cooperates with Sox10 during the induction of genes required for differentiation and myelin formation. Myrf also inhibits the activity of Sox10 on genes that are essential during earlier phases of oligodendroglial development. By characterization of the exact DNA-binding requirements of Myrf, we furthermore show that cooperative activation is a consequence of joint binding of Sox10 and Myrf to the same regulatory regions. In contrast, inhibition of Sox10-dependent gene activation occurs on genes that lack Myrf binding sites and likely involves physical interaction between Myrf and Sox10 followed by sequestration. These two opposite activities allow Myrf to redirect Sox10 from genes that it activates in oligodendrocyte precursor cells to genes that need to be induced during terminal differentiation.


Assuntos
Diferenciação Celular/genética , Proteínas de Membrana/genética , Oligodendroglia/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição/genética , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/metabolismo , Desenvolvimento Embrionário/genética , Células HEK293 , Humanos , Camundongos , Bainha de Mielina/genética , Neurogênese/genética , Ratos
15.
Glia ; 68(8): 1596-1603, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31837180

RESUMO

Schwann cells develop from neural crest cells in an ordered series of events and give rise to myelinating and nonmyelinating subtypes. In their mature state, myelinating Schwann cells produce myelin sheaths that provide trophic support to axons and allow saltatory conduction in the vertebrate peripheral nervous system. Each step of Schwann cell development requires defined changes in chromatin structure that are catalyzed by chromatin remodeling complexes. Over the last years, all major types of chromatin remodeling complexes have been detected in Schwann cells and several have been functionally analyzed. SWI/SNF-type, CHD-type, and INO80/SWR-type chromatin remodelers in particular have been shown to interact with multiple cell-type specific transcription factors and histone modifiers and to be important regulators of Schwann cell development. As a result of different recruitment strategies, each chromatin remodeler targets defined genomic areas and impacts unique mechanisms at specific stages of Schwann cell development. Chromatin remodeling complexes undoubtedly constitute essential components of the Schwann cell regulatory network.


Assuntos
Diferenciação Celular/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Animais , Cromatina/metabolismo , Humanos , Neurogênese/fisiologia , Fatores de Transcrição/metabolismo
16.
Nucleic Acids Res ; 47(12): 6208-6224, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081019

RESUMO

Differentiating oligodendrocytes generate myelin to ensure rapid saltatory conduction in the vertebrate central nervous system. Although oligodendroglial differentiation and myelination are accompanied by dramatic chromatin reorganizations, previously studied chromatin remodelers had only limited direct effects on the process. To study the functional significance of chromatin changes for myelination and identify relevant remodelers, we deleted Ep400, the central ATP-hydrolyzing subunit of the TIP60/EP400 complex, at defined times of mouse oligodendrocyte development. Whereas Ep400-deficient oligodendrocyte precursors develop normally, terminal differentiation and myelination are dramatically impaired. Mechanistically, Ep400 interacts with transcription factor Sox10, binds to regulatory regions of the Myrf gene and is required to induce this central transcriptional regulator of the myelination program. In addition to reduced and aberrant myelin formation, oligodendrocytes exhibit increased DNA damage and apoptosis so that numbers never reach wildtype levels during the short lifespan of Ep400-deficient mice. Ep400 deletion in already mature oligodendrocytes remains phenotypically inapparent arguing that Ep400 is dispensable for myelin maintenance. Given its essential function in myelin formation, modulation of Ep400 activity may be beneficial in conditions such as multiple sclerosis where this process is compromised.


Assuntos
DNA Helicases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Bainha de Mielina/fisiologia , Oligodendroglia/citologia , Medula Espinal/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Células HEK293 , Humanos , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Oligodendroglia/metabolismo , Ratos , Ratos Wistar , Medula Espinal/embriologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo
17.
Nat Commun ; 10(1): 2361, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142747

RESUMO

Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.


Assuntos
Histonas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Células de Schwann/metabolismo , Nervo Isquiático/metabolismo , Fatores de Transcrição/genética , Animais , Montagem e Desmontagem da Cromatina , DNA Helicases , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Transgênicos , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Regiões Promotoras Genéticas , Nervo Isquiático/patologia , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo
18.
J Neurochem ; 146(3): 251-268, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29749639

RESUMO

The high-mobility-group domain containing SoxC transcription factors Sox4 and Sox11 are expressed and required in the vertebrate central nervous system in neuronal precursors and neuroblasts. To identify genes that are widely regulated by SoxC proteins during vertebrate neurogenesis we generated expression profiles from developing mouse brain and chicken neural tube with reduced SoxC expression and found the transcription factor prospero homeobox protein 1 (Prox1) strongly down-regulated under both conditions. This led us to hypothesize that Prox1 expression depends on SoxC proteins in the developing central nervous system of mouse and chicken. By combining luciferase reporter assays and over-expression in the chicken neural tube with in vivo and in vitro binding studies, we identify the Prox1 gene promoter and two upstream enhancers at -44 kb and -40 kb relative to the transcription start as regulatory regions that are bound and activated by SoxC proteins. This argues that Prox1 is a direct target gene of SoxC proteins during neurogenesis. Electroporations in the chicken neural tube furthermore show that Prox1 activates a subset of SoxC target genes, whereas it has no effects on others. We propose that the transcriptional control of Prox1 by SoxC proteins may ensure coupling of two types of transcription factors that are both required during early neurogenesis, but have at least in part distinct functions. Open Data: Materials are available on https://cos.io/our-services/open-science-badges/ https://osf.io/93n6m/.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Prosencéfalo/citologia , Fatores de Transcrição SOXC/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Embrião de Galinha , Imunoprecipitação da Cromatina , Biologia Computacional , Ensaio de Desvio de Mobilidade Eletroforética , Eletroporação , Embrião de Mamíferos , Ontologia Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Prosencéfalo/embriologia , Prosencéfalo/crescimento & desenvolvimento , Prosencéfalo/metabolismo , Fatores de Transcrição SOXC/genética , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/genética
20.
Nat Commun ; 9(1): 899, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29500351

RESUMO

Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.


Assuntos
Calcineurina/metabolismo , Diferenciação Celular , Bainha de Mielina/metabolismo , Fatores de Transcrição NFATC/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Transdução de Sinais , Animais , Sequência Conservada , Evolução Molecular , Regulação da Expressão Gênica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteínas Nucleares , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Ratos , Fatores de Transcrição SOXE/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...