Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 3(2): 324-32, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11888319

RESUMO

Networks of N-isopropylacrylamide (NIPAM) copolymers, coupled to spherical phospholipid bilayers, are suitable as a model for the study of the interaction between the cytoskeleton and cellular membranes, as well as for promising new drug delivery systems with triggerable drug release properties and improved stability. In this article, we describe a simple preparation technique for liposomes from egg phosphatidyl choline (EPC) encapsulating a cross-linked NIPAMminus signTEGDM copolymer skeleton (tetraethylene glycol dimethacrylate, TEGDM) which is coupled only to the inner monolayer by a novel membrane anchor monomer. Polymerization in the lipid vesicles was initiated at the inner membrane surface by the radical initiator 2,2-diethoxy-acetophenone (DEAP) permeating through the membrane from the outside. The effects of photopolymerization and polymer formation on vesicle shape and membrane integrity were studied by transmission electron microscopy (TEM), cryo-TEM, and atomic force microscopy (AFM). Upon UV irradiation, approximately 100% of the vesicles contained a polymer gel and only occasional changes in the spherical shape of the liposomes were observed. The architecture of the polymer network inside the liposomal compartment was determined by the conditions of the photopolymerization. Composite structures of polymer hollow spheres or solid spheres, respectively, tethered to spherical membrane vesicles were produced. The increased stability of the polymer-tethered lipid bilayers against solubilization by sodium cholate, compared to pure EPC vesicles, was determined by radiolabeling the lipid membrane.


Assuntos
Resinas Acrílicas/química , Citoesqueleto/química , Lipossomos/química , Varredura Diferencial de Calorimetria , Microscopia Crioeletrônica , Citoesqueleto/ultraestrutura , Microscopia de Força Atômica , Estrutura Molecular , Fotoquímica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...