Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reconstr Microsurg ; 20(7): 555-64, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15534783

RESUMO

In reconstructive surgery, the integration of tissue-engineered cartilage in a prefabricated free flap may make it possible to generate flaps combining a variety of tissue components, to meet the special requirements of particular defects. One aim of the present study was to investigate prefabrication of a microvascular free flap by implanting a vessel loop under a skin flap in a rabbit model. A second aim was to report on the authors' preliminary experiences in prelaminating prefabricated flaps with autologous tissue-engineered cartilage, in terms of matrix development, inflammatory reaction, and host-tissue interaction. The flap was prefabricated by implanting a vessel loop under a random-pattern abdominal skin flap. The tissue-engineered cartilage constructs were made by isolating chondrocytes from auricular biopsies. Following a period of amplification, the cells were seeded onto a non-woven scaffold made of a hyaluronic-acid derivative and cultivated for 2 weeks. One cell-biomaterial construct was placed beneath the prefabicated flap, and two additional constructs were placed subcutaneously and intramuscularly. In addition, a biomaterial sample without cells was placed subcutaneously to provide a control. All implanted specimens were left in position for 6 or 12 weeks. Neovascularization in the prefabricated flap and biomaterial construct was analyzed by angiography. After explantation, the specimens were examined by histologic and immunohistochemical methods. The prefabricated flaps showed a well-developed network of blood vessels between the implanted vessel loop and the original random-pattern blood supply. The tissue-engineered constructs remained stable in size and showed signs of tissue similar to hyaline cartilage, as evidenced by the expression of cartilage-specific collagen type II and proteoglycans. No inflammatory reactions were observed. The physiologic environment of the autologous rabbit model provided favorable conditions for matrix deposition and maturation of the cell-biomaterial constructs. These initial results demonstrated the potential of prefabricating an axial perfused flap, combined with tissue-engineered cartilage, thus creating functionally competent tissue components for reconstructive surgery with minimal donor-site morbidity.


Assuntos
Cartilagem/crescimento & desenvolvimento , Cartilagem/transplante , Retalhos Cirúrgicos/irrigação sanguínea , Engenharia Tecidual/métodos , Angiografia , Animais , Técnicas de Cultura de Células , Condrócitos/citologia , Colágeno Tipo II/metabolismo , Modelos Animais , Proteoglicanas/metabolismo , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...