Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38854049

RESUMO

For decades, studies have noted that transcription factors (TFs) can behave as either activators or repressors of different target genes. More recently, evidence suggests TFs can act on transcription simultaneously in positive and negative ways. Here we use biophysical models of gene regulation to define, conceptualize and explore these two aspects of TF action: "duality", where TFs can be overall both activators and repressors at the level of the transcriptional response, and "coherent and incoherent" modes of regulation, where TFs act mechanistically on a given target gene either as an activator or a repressor (coherent) or as both (incoherent). For incoherent TFs, the overall response depends on three kinds of features: the TF's mechanistic effects, the dynamics and effects of additional regulatory molecules or the transcriptional machinery, and the occupancy of the TF on DNA. Therefore, activation or repression can be tuned by just the TF-DNA binding affinity, or the number of TF binding sites, given an otherwise fixed molecular context. Moreover, incoherent TFs can cause non-monotonic transcriptional responses, increasing over a certain concentration range and decreasing outside the range, and we clarify the relationship between non-monotonicity and common assumptions of gene regulation models. Using the mammalian SP1 as a case study and well controlled, synthetically designed target sequences, we find experimental evidence for incoherent action and activation, repression or non-monotonicity tuned by affinity. Our work highlights the importance of moving from a TF-centric view to a systems view when reasoning about transcriptional control.

2.
bioRxiv ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38617287

RESUMO

Current approaches to lineage tracing of stem cell clones require genetic engineering or rely on sparse somatic DNA variants, which are difficult to capture at single-cell resolution. Here, we show that targeted single-cell measurements of DNA methylation at single-CpG resolution deliver joint information about cellular differentiation state and clonal identities. We develop EPI-clone, a droplet-based method for transgene-free lineage tracing, and apply it to study hematopoiesis, capturing hundreds of clonal trajectories across almost 100,000 single-cells. Using ground-truth genetic barcodes, we demonstrate that EPI-clone accurately identifies clonal lineages throughout hematopoietic differentiation. Applied to unperturbed hematopoiesis, we describe an overall decline of clonal complexity during murine ageing and the expansion of rare low-output stem cell clones. In aged human donors, we identified expanded hematopoietic clones with and without genetic lesions, and various degrees of clonal complexity. Taken together, EPI-clone enables accurate and transgene-free single-cell lineage tracing at scale.

3.
Science ; 373(6558)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34446581

RESUMO

Organ development is orchestrated by cell- and time-specific gene regulatory networks. In this study, we investigated the regulatory basis of mouse cerebellum development from early neurogenesis to adulthood. By acquiring snATAC-seq (single-nucleus assay for transposase accessible chromatin using sequencing) profiles for ~90,000 cells spanning 11 stages, we mapped cerebellar cell types and identified candidate cis-regulatory elements (CREs). We detected extensive spatiotemporal heterogeneity among progenitor cells and a gradual divergence in the regulatory programs of cerebellar neurons during differentiation. Comparisons to vertebrate genomes and snATAC-seq profiles for ∼20,000 cerebellar cells from the marsupial opossum revealed a shared decrease in CRE conservation during development and differentiation as well as differences in constraint between cell types. Our work delineates the developmental and evolutionary dynamics of gene regulation in cerebellar cells and provides insights into mammalian organ development.


Assuntos
Evolução Biológica , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Neurônios/fisiologia , Elementos Reguladores de Transcrição , Animais , Cerebelo/embriologia , Cromatina/genética , Cromatina/metabolismo , DNA Intergênico , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Masculino , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurogênese , Gambás/genética
4.
Nat Commun ; 12(1): 1366, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649320

RESUMO

Cancer stem cells drive disease progression and relapse in many types of cancer. Despite this, a thorough characterization of these cells remains elusive and with it the ability to eradicate cancer at its source. In acute myeloid leukemia (AML), leukemic stem cells (LSCs) underlie mortality but are difficult to isolate due to their low abundance and high similarity to healthy hematopoietic stem cells (HSCs). Here, we demonstrate that LSCs, HSCs, and pre-leukemic stem cells can be identified and molecularly profiled by combining single-cell transcriptomics with lineage tracing using both nuclear and mitochondrial somatic variants. While mutational status discriminates between healthy and cancerous cells, gene expression distinguishes stem cells and progenitor cell populations. Our approach enables the identification of LSC-specific gene expression programs and the characterization of differentiation blocks induced by leukemic mutations. Taken together, we demonstrate the power of single-cell multi-omic approaches in characterizing cancer stem cells.


Assuntos
Células Clonais/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Análise de Célula Única , Transcriptoma/genética , Biomarcadores Tumorais/genética , Medula Óssea/patologia , Diferenciação Celular , Regulação Leucêmica da Expressão Gênica , Genoma , Células-Tronco Hematopoéticas/patologia , Humanos , Células K562 , Mitocôndrias/genética , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...